
Conditional Random Fields 
and the

Structured Perceptron

CS 585, Fall 2017
Introduction to Natural Language Processing

http://people.cs.umass.edu/~brenocon/inlp2017

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, October 3, 17

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016


Log-linear models  (NB, LogReg, HMM, CRF...)

• x:  Text Data

• y:  Proposed class  or sequence

• θ:  Feature weights (model parameters)

• f(x,y):  Feature extractor, produces feature vector

2

Decision rule:

p(y|x) = 1

Z

exp

�
✓

T
f(x, y)

�
✓

T
f(x, y)| {z }
G(y)

arg max

y

⇤2outputs(x)
G(y⇤)

How to we evaluate for HMM/CRF?  Viterbi!

Tuesday, October 3, 17



Things to do with a log-linear model

3

decoding/prediction

p(y|x) = 1

Z

exp

�
✓

T
f(x, y)

�
✓

T
f(x, y)| {z }
G(y)

arg max

y

⇤2outputs(x)
G(y⇤)

x
Text Input

y
Output

θ
Feature 
weights

f(x,y)
Feature extractor (feature 

vector)

obtain

obtain
(just one)

given given
(just one)

given

parameter learning
given

(many pairs)
given given

(many pairs)

feature engineering
(human-in-the-loop)

fiddle with
during

experiments

obtain
in each experiment

given
(many pairs)

given
(many pairs)

Tuesday, October 3, 17



HMM as factor graph

4

A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

(Additive) Viterbi:

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

p(y, w) =
Y

t

p(wy|yt) p(yt+1|yt)

arg max

y

⇤2outputs(x)
G(y⇤)

Tuesday, October 3, 17



HMM as log-linear

5

A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

G(y) =

=
X

t

X

i2allfeats

✓ift,i(yt, yt+1, wt)

X

i2allfeats

✓ifi(yt, yt+1, wt)=

X

t

2

4
X

k2K

X

w2V

µw,k1{yt = k ^ wt = w}+
X

k,j2K

�j,k1{yt = j ^ yt+1 = k}

3

5

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

p(y, w) =
Y

t

p(wy|yt) p(yt+1|yt)

Tuesday, October 3, 17



CRF

• advantages

• 1. Features: why just word identity features?  add many more!

• 2. Discriminative learning: can train it to optimize accuracy of 
sequence tagging

• Viterbi can be used for efficient prediction (due to locality 
assumption)

6

Prob. dist over whole sequence
(log-linear model of sequence output)

Linear-chain CRF: whole-sequence 
feature function decomposes into 

features over neighboring tags
(Markovian: no long-distance effects)

log p(y|x) = C + ✓

T
f(x, y)

f(x, y) =
X

t

ft(x, yt, yt+1)

Tuesday, October 3, 17



7

f(x,y) is...

V,V: 1
V,A: 1
V,N: 0
....
V,finna: 1
V,get: 1
A,good: 1
N,good: 0
...

Two simple feature templates

“Transition features”

“Observation features”

finna get good
V V Agold  y =

ftrans:A,B(x, y) =
X

t

1{yt�1 = A, yt = B}

femit:A,w(x, y) =
X

t

1{yt = A, xt = w}

Tuesday, October 3, 17



-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0f(x, y)

Goodness(y) =

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is 
numeric indexing, though 
sometimes convenient to 
implement as hash table.

finna get good
V V Agold  y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}

✓

T
f(x, y)

Tuesday, October 3, 17



CRF: prediction with Viterbi

• Scoring function has local decomposition

9

large overall feature extraction function for an entire structure at once.1 The following parts will
build up these pieces. First, we will focus on inference, not learning.

Question 5.2. [2 points] We provide a barebones version of local emission features, which calculates
the local features for a particular tag at a token position. You can run this function all by itself.
Make up an example sentence, and call this function with it, giving it a particular index and
candidate tag. Show the code for the function call you made and the function’s return value, and
explain what the features mean (just a sentence or two).

Question 5.3. [2 points] Implement features for seq(), which extracts the full feature vector f(x, y),
where x is a sentence and y is an entire tagging sequence for that sentence. This will add up the
feature vectors from each local emissions features for every position, as well as transition features
for every position (there are N � 1 of them, of course). Show the output on a very short example
sentence and example proposed tagging, that’s only 2 or 3 words long.

To define f(x, y) a little more precisely: If f (B)
(t, x, y) means the local emissions feature vector

at position t (i.e. the local emission features function), and f

(A)
(y

t�1, yt, y) is the transition feature
function for positions (t�1, t) (which just returns a feature vector where everything is zero, except
a single element is 1), then the full sequence feature vector will be the vector-sum of all those
feature vectors:

f(x, y) =

TX

t

f

(B)
(t, x, y) +

TX

t=2

f

(A)
(y

t�1, yt)

You implemented f

(B) above. You probably don’t need to bother implementing f

(A) as a stan-
dalone function. You will have to decide on a particular convention to encode the name of a tran-
sition feature. For example, one way to do it is with string concatenation like this, "trans %s %s"
% (prevtag, curtag), where prevtag and curtag are strings. Or you could use a python tuple
of strings, which works since tuples have the ability to be keys in a python dictionary.

In other words: the emissions and transition features will all be in the same vector, just as keys
in the dictionary that represents the feature vector. The transition features are going to be the count
of how many times a particular transition (tag bigram) happened. The emissions features are go-
ing to be the vector-sum of all the local emission features, as calculated from local emission features.

Question 5.4. [2 points] Look at the starter code for calc factor scores, which calculates the A and
B score functions that are going to be passed in to your Viterbi implementation, in order to do
a prediction. The only function it will need to call is local emission features. It should NOT call
features for seq. Why not?

Question 5.5. [4 points] Implement calc factor scores. Make up a simple example (2 or 3 words
long), with a simple model with at least some nonzero features (you might want to use a default-

dict(float), so you don’t have to fill up a dict with dummy values for all possible transitions), and
show your call to this function and the output.

Question 5.6. [2 points] Implement predict seq(), which predicts the tags for an input sentence,
given a model. It will have to calculate the factor scores, then call Viterbi as a subroutine, then
return the best sequence prediction. If your Viterbi implementation does not seem to be working,
use the implementation of the greedy decoding algorithm that we provide (it uses the same inputs
as vit.viterbi()).

1If we were clever with function or OO abstractions it’s actually possible to share code for this... but in practice that’s
too hard, so please just make a new implementation in structperc.py.

6

✓

T
f(x, y) =

X

t

✓

T
f

(B)(t, x, y) +
TX

t=2

+f

(A)(yt�1, yt)

Prob. dist over whole sequence

Linear-chain CRF: whole-sequence 
feature function decomposes into 

pairs

log p(y|x) = C + ✓

T
f(x, y)

f(x, y) =
X

t

ft(x, yt, yt+1)

Tuesday, October 3, 17



Structured/multiclass Perceptron

• For ~10 iterations

• For each (x,y) in dataset

• PREDICT  

• IF y=y*, do nothing

• ELSE update weights

10

y

⇤
= argmax

y0
✓

T
f(x, y

0
)

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate constant
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label

Tuesday, October 3, 17



Update rule

11

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label

POS_aweso
me POS_this POS_oof .... NEG_awes

ome NEG_this NEG_oof ....

1 1 0 .... 0 0 0 ....

0 0 0 .... 1 1 0 ....

+1 +1 0 .... -1 -1 0 ....

real  f(x,  POS) =

pred  f(x,  NEG) =

y=POS   
x=“this awesome movie ...”
Make mistake: y*=NEG

f(x,  POS) – f(x, NEG) =

f(x,  POS) – f(x, NEG)

Tuesday, October 3, 17



12

For each feature j in true y but not predicted y*:

For each feature j not in true y, but in predicted y*:

✓j := ✓j � (r)fj(x, y)

✓j := ✓j + (r)fj(x, y)

Update rule

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label

f(x,  POS) – f(x, NEG)

Tuesday, October 3, 17



13

f(x,y) is...

V,V: 1
V,A: 1
V,N: 0
....
V,finna: 1
V,get: 1
A,good: 1
N,good: 0
...

Two simple feature templates

“Transition features”

“Observation features”

finna get good
V V Agold  y =

ftrans:A,B(x, y) =
X

t

1{yt�1 = A, yt = B}

femit:A,w(x, y) =
X

t

1{yt = A, xt = w}

Tuesday, October 3, 17



-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0f(x, y)

Goodness(y) =

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is 
numeric indexing, though 
sometimes convenient to 
implement as hash table.

finna get good
V V Agold  y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}

✓

T
f(x, y)

Tuesday, October 3, 17



pred  y* = N V A

f(x, y)
V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

f(x, y*)
N,V: 1
V,A: 1
N,finna: 1
V,get: 1
A,good: 1

f(x,y) - f(x, y*)

V,V: +1
N,V: -1
V,finna: +1
N,finna: -1

finna get good
V V Agold  y =

Learning idea:  want gold y to have high 
scores.
Update weights so y would have a 
higher score, and y* would be lower, 
next time.

Perceptron update rule:

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

Tuesday, October 3, 17



-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0f(x, y)

1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 3 0 0 0
f(x, y⇤)

The update vector:

+1 -1( )+ r

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

Tuesday, October 3, 17



Perceptron notes/issues

• Issue: does it converge? (generally no)

• Solution: the averaged perceptron

• Can you regularize it?  No...  just averaging...

• By the way, there’s also likelihood training out there (gradient 
ascent on the log-likelihood function: the traditional way to 
train a CRF)

• structperc is easier to implement/conceptualize and performs 
similarly in practice

17

Tuesday, October 3, 17



Averaged perceptron

• To get stability for the perceptron:
Voted perc or Averaged perc

• Averaging: For t’th example... average together vectors from 
every timestep

18

When debugging, you should make new A and B examples that are very simple. This will
test different code paths. Also you can try the randomized test() from the starter code (posted to
website’s starter code on Oct 4).

Look out for negative indexes as a bug. In python, if you use an index that’s too high to be
in the list, it throws an error. But it will silently accept a negative index ... it interprets that as
indexing from the right.

3 Averaged Perceptron

[5 total points]

We will be using the following definition of the perceptron, which is the multiclass or struc-
tured version of the perceptron. The training set is a bunch of input-output pairs (x

i

, y

i

). (For
classification, y

i

is a label, but for tagging, y
i

is a sequence).

• For 10 or so iterations, iterate through each (x

i

, y

i

) pair in the dataset, and for each,

– Predict y⇤ := argmax

y

0
✓

T
f(x

i

, y

0
)

– If y
i

6= y

⇤: then update ✓ := ✓

(old)
+ rg

where r is a fixed step size (e.g. r = 1) and g is the “gradient” vector, meaning a vector that will
get added into ✓ for the update, specifically

g = f(x

i

, y

i

)| {z }
feats of true output

� f(x

i

, y

⇤
)| {z }

feats of predicted output

Both in theory and in practice, the predictive accuracy of a model trained by the structured
perceptron will be better if we use the average value of ✓ over the course of training, rather than
the final value of ✓. This is because ✓ wanders around and doesnt converge (typically), because it
overfits to whatever data it saw most recently. After seeing t training examples, define the averaged

parameter vector as

¯

✓

t

=

1

t

tX

t

0=1

✓

t

0 (1)

where ✓

t

0 is the weight vector after t

0 updates. (We are counting t by the number of training
examples, not passes through the data. So if you had 1000 examples and made 10 passes through
the data in order, the final time you see the final example is t = 10000.) For training, you still use
the current ✓ parameter for predictions. But at the very end, you return the ¯

✓, not ✓, as your final
model parameters to use on test data.

Directly implementing Equation 1 would be really slow. So here’s a better algorithm. This is
the same as in Hal Daume’s CIML chapter on perceptrons, but adapted for the structured case (as
opposed to Daume’s algorithm, which assumes binary output). Define g

t

to be the update vector
g as described earlier. The perceptron update can be written

✓

t

= ✓

t�1 + rg

t

Thus the averaged perceptron algorithm is, using a new “weightsums” vector S,

• Initialize t = 1, ✓0 = ~

0, S0 = ~

0

3

• Efficiency?

• Lazy update algorithm in HW (and Daume reading)

Tuesday, October 3, 17


