Log-linear perceptron learning

CS 585, Fall 2017

Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2017

Brendan O’Connor
College of Information and Computer Sciences
University of Massachusetts Amherst

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016

NB as log-linear model
len(D)
1
P(spam | D) = EP(Spam) H P(w; | spam)

t=1

1
P(spam | D) = EP(Spam) H P(w | spam)®*
weV

log P(spam | D) =log P(spam) + Z T, log P(w | spam)
weV
— log Z -

Log-linear models (NB, LogReg, HMM, CRE.)

® x: [ext Data

® y: Proposed class or sequence

® O: Feature weights (model parameters)
® f(x,y): Feature extractor, produces feature vector

1
p(y|x) = ~ €XP (0" f(z,y))
A,—/
G(y)
Decision rule: arg max G(y")

y* Eoutputs(x)

Log-linear classifier

Opias + = Opias- =
eha|o|oy,+ — ehalolcy,— —
edog,+ = edog,— =

® P(+ |“happy dog”) =
® P(— | "happy dog”) =

The Perceptron Algorithm

® Perceptron is not a model:

Update weights to fix prediction errors.

e W Q;b- y

it is a learning algorithm i A E
4 g g

® Rosenblatt 1957) S E
gzt | | -k

s () d id

, , i M A A

® |nsanely simple algorithm i = |2
® |terate through dataset. i e
. - ENEN N
Predict. - H: :

{‘f

(]
Sl 4 Qo’p-

‘ Ll e Be ol -l N |

'

® (Can be used for classification OR structured

predICtIOI’l The Mark | Perceptron machine was the first implementation of the
perceptron algorithm. The machine was connected to a camera that
® structured PerceptrOn used 20x20 cadmium sulfide photocells to produce a 400-pixel image.
The main visible feature is a patchboard that allowed experimentation
® 1 1 1 1 1 1 _ with different combinations of input features. To the right of that are
Dlscrl mi natlve Iea’rn | ng algorlth m for any Iog |Inear arrays ofpotentiometers that implemented the adaptive weights.

model (our view in this course)

Tuesday, October 3, 17

https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer

Binary perceptron

® For ~|0 iterations

® For each (x,y) in dataset
e PREDICT -
y- = POSif0' x>0

= NEG if 'z <0
® |F y=y* do nothing

® ELSE update weights

if POS misclassified as NEG:
let’s make it more positive-y next time around

0:=0-+rx

(9 . — (9 — T X if NEG misclassified as POS:

/ let’s make it more negative-y next time

learning rate constant
e.g. r=|

Tuesday, October 3, 17

Structured/multiclass Perceptron
(for any log-linear model)

® For ~|0 iterations

® For each (x,y) in dataset
e PREDICT

X

y* =argmax0' f(z,y’)
y/
® |F y=y* do nothing

® ELSE update weights
0:=0+rf(z,y) = flz,y")]

_— | l

learning rate constant Features for Features for
e.g.r=1 TRUE label PREDICTED label

Perceptron notes/issues

® |ssue: does it converge! (generally no)
® Solution: the averaged perceptron

® Can you regularize it! No... just averaging...

® By the way, there’s also likelihood training out there (gradient
ascent on the log-likelihood function)

® structperc is easier to implement/conceptualize and performs
similarly in practice

