UMass CS 585, 9/28/17 in-class notes

Formand Als			
Hent P(W):			
	5-	Tt 76	4/1/2 P(y+/)+-1)
3	(3)	3	Noth order HMM >
the	Nabbd	dog	P(y+ y+-1 x-2)
		D)	1st order F. Algo. Rentime? K storke voras. N tokens long
		A	N tokens long
the	happy	Ag	W. Noive Enum Alga. (KN): F. Algo
			o(KN): F. Algo

Want $P(\vec{w}) = \{\vec{y} \mid P(\vec{w}, \vec{y})\}$ = E= Tt P(Jt/y+1) P(wt/Jt) wz = happy

Forward Algo: (oft-to-right

Log-linear form for an HMM — for handout

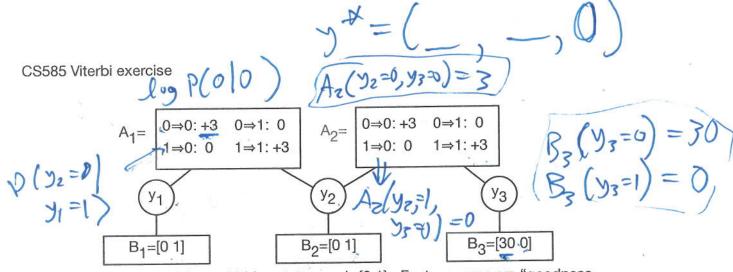
$$A(y_1,y_2) = log P(y_2|y_1)$$

$$A(y_2,y_3) = log P(y_3|y_2)$$

$$B_1(y_1) = log Pemit(w_1|y_1)$$

$$B_2(y_2) = log Pemit(w_2|y_2)$$

$$B_3(y_3) = log Pemit(w_3|y_3)$$



Sticky-favoring model over hidden state vocab {0,1}. Factor scores are "goodness points" are in log-scale additive form. (They're positive, though for an HMM they would all be negative.)

$$log P(y | w) = (constant) + G(y1, y2, y3)$$

 $G(y1, y2, y3) = A(y1,y2) + A(y2,y3) + B1(y1) + B2(y2) + B3(y3)$

Additive Viterbi

For t=1..T, For k in {0,1},
$$V_t[k] := \max_{j} \left(V_{t-1}[j] + A(j,k) + B_t(k) \right)$$

$$B[k] := \arg\max_{j} \left(\dots \right)$$

For t=1, set A₀(anything)=0 and V₀[anything]=0

Final backtrace step: take best-scoring from last V_T, follow the backpointers all the way back

Run Viterbi and fill out the trellis with arcs like in the textbook's HMM example.

Most probable sequence
$$y^* = (\)$$
, $\)$ $G(y^*) = \$

