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Naive Bayes:  bag of words

• BoW - Order independent

• Can we add more features to the model?

• NB assumes: Feature statistically independent, given class

• Examples of non-independent features?

• Correlated features => double counting

• Can hurt classifier accuracy and calibration
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Logistic regression

• Log Linear Model - a.k.a. Logistic regression classifier

• Kinda like Naive Bayes, but:

• Doesn’t assume features are independent

• Correlated features don’t “double count”

• Discriminative training:  optimize p(y | text), not p(y, text)

• Tends to work better - state of the art for doc classif,
widespread hard-to-beat baseline for many tasks

• Good off-the-shelf implementations (e.g. scikit-learn)

3

Thursday, September 21, 17



9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

• Input document d  (a string...)

• Engineer a feature function, f(d), to generate feature vector x

4

f(d) x

Features! Features!
Features!

• Not just word counts.  Anything that might be useful!

• Feature engineering: when you spend a lot of trying and testing new features.  Very 
important!!  This is a place to put linguistics in.

f(d) = 

Count of  “happy”,
(Count of “happy”) / (Length of doc),
log(1 + count of “happy”),
Count of “not happy”,
Count of words in my pre-specified 
word list, “positive words according 
to my favorite psychological theory”,
Count of “of the”,
Length of document,
...

Typically these use feature templates:
Generate many features at once

for each word w:
  - ${w}_count
  - ${w}_log_1_plus_count
  - ${w}_with_NOT_before_it_count
  - ....

✓ ◆
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Negation

Add%NOT_%to%every%word%between%negation%and%following%punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

Das,%Sanjiv and%Mike%Chen.%2001.%Yahoo!%for%Amazon:%Extracting%market%sentiment%from%stock%
message%boards.%In%Proceedings%of%the%Asia%Pacific%Finance%Association%Annual%Conference%(APFA).
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.  2002.  Thumbs up? Sentiment Classification 
using Machine Learning Techniques. EMNLP-2002, 79—86.
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Classification: LogReg (I)
First, we’ll discuss how LogReg works.
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First, we’ll discuss how LogReg works.

Then, why it’s set up the way that it is.

Application: spam filtering

Classification: LogReg (I)
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● compute features (xs)

● given weights (betas)

Classification: LogReg (I)

= (count “nigerian”, count “prince”, count “nigerian prince”)

= (-1.0,    -1.0,     4.0)
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● compute the dot product

Classification: LogReg (II)
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● compute the dot product

● compute the logistic function

Classification: LogReg (II)
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LogReg Exercise

= (-1.0,    -1.0,     4.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

= (1,     1,     1)
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LogReg Exercise

= (-1.0,    -1.0,     4.0)

= (1,     1,     1)
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OK, let’s take this step by step...

● Why dot product?

Classification: LogReg
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OK, let’s take this step by step...

● Why dot product?

● Why would we use the logistic function?

Classification: LogReg
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Intuition: weighted sum of features

All linear models have this form!

Classification: Dot Product
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NB as Log-Linear Model

Recall that Naive Bayes is also a linear model...
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NB as Log-Linear Model
● What are the features in Naive Bayes?

● What are the weights in Naive Bayes?
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NB as Log-Linear Model
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NB as log-linear model

26

P (spam | D) =
1

Z
P (spam)

len(D)Y

t=1

P (wt | spam)

P (spam | D) =
1

Z
P (spam)

Y

w2V
P (w | spam)xw

logP (spam | D) = logP (spam) +

X

w2V
xw logP (w | spam)

� logZ
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NB as Log-Linear Model

In both NB and LogReg 

we compute the dot product!
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What does this function look like?

What properties does it have?

Logistic Function
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Logistic Function
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● logistic function 

Logistic Function
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● logistic function 

● decision boundary is dot product = 0 (2 class)

Logistic Function
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● logistic function 

● decision boundary is dot product = 0 (2 class)

● comes from linear log odds

Logistic Function
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● Both compute the dot product

● NB: sum of log probs; LogReg: logistic fun.

NB vs. LogReg
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● NB: learn conditional probabilities separately 
via counting

● LogReg: learn weights jointly

Learning Weights

Thursday, September 21, 17



Learning Weights
● given: a set of feature vectors and labels

● goal: learn the weights.
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Learning Weights

n examples; xs - features; ys - class
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Learning Weights
We know:

So let’s try to maximize probability of the entire 
dataset - maximum likelihood estimation
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Perceptron learning algorithm
(binary classif.)

42
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Perceptron learning algorithm
(binary classif.)
• Close cousin of MLE gradient ascent

• Loop through dataset many times.  For each example:

• Predict = argmaxy p(y | x, β)

• If ypred != ygold:

• β += (ygold – ypred) x

• Does this converge and when?

• If no errors, finishes. If not linearly separable: doesn’t converge

• What does an update do?

• e.g. for false negative: Increase weights for features in example

42
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LogReg Exercise

= (1.0,    -3.0,     2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy
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LogReg Exercise

= (1.0,    -3.0,     2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

= (0.5,    -1.0,     3.0)

= (-1.0,    -1.0,     4.0)

75% accuracy

81% accuracy
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Pros & Cons
● LogReg doesn’t assume independence

○ better calibrated probabilities

● NB is faster to train; less likely to overfit
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NB & Log Reg
● Both are linear models: 

● Training is different:
○ NB: weights trained independently
○ LogReg: weights trained jointly
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LogReg: Important Details!
● Overfitting / regularization
● Visualizing decision boundary / bias term
● Multiclass LogReg

You can use scikit-learn (python) to test it out!
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Bias Term
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Binary vs. Multiclass

• Binary logreg: let x be a feature vector for the doc, and y either 0 or 1

51

� is a weight vector across the x features.
p(y = 1|x,�) = exp(�

T
x)

1 + exp(�

T
x)

• Multiclass logistic regression, in “log-linear” form:
Features are jointly of document and output class

2 CHAPTER 7 • LOGISTIC REGRESSION

P(y|x) ?=
NX

i=1

w

i

f

i

(7.3)

?= w · f (7.4)

Stop for a moment to figure out why this doesn’t produce a legal probability. The
problem is that the expression

P
N

i=1 w

i

f

i

produces values from �• to •; nothing in
the equation above forces the output to be a legal probability, that is, to lie between
0 and 1. In fact, since weights are real-valued, the output might even be negative!

We’ll solve this in two ways. First, we’ll wrap the exp function around the
weight-feature dot-product w · f , which will make the values positive, and we’ll
create the proper denominator to make everything a legal probability and sum to
1. While we’re at it, let’s assume now that the target y is a variable that ranges over
different classes; we want to know the probability that it takes on the particular value
of the class c:

p(y = c|x) = p(c|x) =
1
Z

exp
X

i

w

i

f

i

(7.5)

So far we’ve been assuming that the features f

i

are real-valued, but it is more
common in language processing to use binary-valued features. A feature that takes
on only the values 0 and 1 is called an indicator function. Furthermore, the featuresindicator

function

are not just a property of the observation x, but are instead a property of both the
observation x and the candidate output class c. Thus, in MaxEnt, instead of the
notation f

i

or f

i

(x), we use the notation f

i

(c,x), meaning feature i for a particular
class c for a given observation x:

p(c|x) =
1
Z

exp

 
X

i

w

i

f

i

(c,x)

!
(7.6)

Fleshing out the normalization factor Z , and specifying the number of features
as N gives us the final equation for computing the probability of y being of class c

given x in MaxEnt:

p(c|x) =

exp
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f

i

(c,x)

!

X

c

02C

exp

 
NX

i=1

w

i

f

i

(c0,x)

! (7.7)

7.1 Features in Multinomial Logistic Regression

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and we would like to know whether to
assign the sentiment class +, �, or 0 (neutral) to a document. Here are five potential
features, representing that the document x contains the word great and the class is

w is a weight vector across the x features.
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Multiclass log. reg.
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7.1 • FEATURES IN MULTINOMIAL LOGISTIC REGRESSION 3

+ ( f1), contains the word second-rate and the class is � ( f2), and contains the word
no and the class is � ( f3).

f1(c,x) =

⇢
1 if “great” 2 x & c =+
0 otherwise

f2(c,x) =

⇢
1 if “second-rate” 2 x & c =�
0 otherwise

f3(c,x) =

⇢
1 if “no” 2 x & c =�
0 otherwise

f4(c,x) =

⇢
1 if “enjoy” 2 x & c =�
0 otherwise

Each of these features has a corresponding weight, which can be positive or
negative. Weight w1(x) indicates the strength of great as a cue for class +, w2(x)
and w3(x) the strength of second-rate and no for the class �. These weights would
likely be positive—logically negative words like no or nothing turn out to be more
likely to occur in documents with negative sentiment (Potts, 2011). Weight w4(x),
the strength of enjoy for �, would likely have a negative weight. We’ll discuss in
the following section how these weights are learned.

Since each feature is dependent on both a property of the observation and the
class being labeled, we would have additional features for the links between great

and the negative class �, or no and the neutral class 0, and so on.
Similar features could be designed for other language processing classification

tasks. For period disambiguation (deciding if a period is the end of a sentence or part
of a word), we might have the two classes EOS (end-of-sentence) and not-EOS and
features like f1 below expressing that the current word is lower case and the class is
EOS (perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following a upper cased word is a likely to be an EOS, but if the word itself is St.

and the previous word is capitalized, then the period is likely part of a shortening of
the word street.

f1(c,x) =

⇢
1 if “Case(w

i

) = Lower” & c = EOS
0 otherwise

f2(c,x) =

⇢
1 if “w

i

2 AcronymDict” & c = EOS
0 otherwise

f3(c,x) =

⇢
1 if “w

i

= St.” & “Case(w
i�1) = Upper” & c = EOS

0 otherwise

In Chapter 10 we’ll see features for the task of part-of-speech tagging. It’s even
possible to do discriminative language modeling as a classification task. In this case
the set C of classes is the vocabulary of the language, and the task is to predict the
next word using features of the previous words (traditional N-gram contexts). In
that case, the features might look like the following, with a unigram feature for the
word the ( f1) or breakfast ( f2), or a bigram feature for the context word American

predicting breakfast ( f3). We can even create features that are very difficult to create
in a traditional generative language model like predicting the word breakfast if the
previous word ends in the letters -an like Italian, American, or Malaysian ( f4).

4 CHAPTER 7 • LOGISTIC REGRESSION

f1(c,x) =

⇢
1 if “c = the”
0 otherwise

f2(c,x) =

⇢
1 if “c = breakfast”
0 otherwise

f3(c,x) =

⇢
1 if “w

i�1 = American; & c = breakfast”
0 otherwise

f4(c,x) =

⇢
1 if “w

i�1ends in -an; & c = breakfast”
0 otherwise

The features for the task of discriminative language models make it clear that
we’ll often need large numbers of features. Often these are created automatically
via feature templates, abstract specifications of features. For example a trigramfeature

templates

template might create a feature for every predicted word and pair of previous words
in the training data. Thus the feature space is sparse, since we only have to create a
feature if that n-gram exists in the training set.

The feature is generally created as a hash from the string descriptions. A user
description of a feature as, ”bigram(American breakfast)” is hashed into a unique
integer i that becomes the feature number f

i

.

7.2 Classification in Multinomial Logistic Regression

In logistic regression we choose a class by using Eq. 7.7 to compute the probability
for each class and then choose the class with the maximum probability.

Fig. 7.1 shows an excerpt from a sample movie review in which the four feature
defined in Eq. 7.8 for the two-class sentiment classification task are all 1, with the
weights set as w1 = 1.9, w2 = .9, w3 = .7, w4 =�.8.

... there are virtually no surprises, and the 
writing is second-rate. So why did I enjoy it 
so much?  For one thing, the cast is great.

0.7

1.9

-0.8

.9- +

--

Figure 7.1 Some features and their weights for the positive and negative classes. Note the
negative weight for enjoy meaning that it is evidence against the class negative �.

Given these 4 features and the input review x, P(+|x) and P(�|x) can be com-
puted with Eq. 7.7:

P(+|x) =
e

1.9

e

1.9 + e

.9+.7�.8 = .82 (7.8)

P(�|x) =
e

.9+.7�.8

e

1.9 + e

.9+.7�.8 = .18 (7.9)
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So far we’ve been assuming that the features f

i

are real-valued, but it is more
common in language processing to use binary-valued features. A feature that takes
on only the values 0 and 1 is called an indicator function. Furthermore, the featuresindicator

function

are not just a property of the observation x, but are instead a property of both the
observation x and the candidate output class c. Thus, in MaxEnt, instead of the
notation f
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Fleshing out the normalization factor Z , and specifying the number of features
as N gives us the final equation for computing the probability of y being of class c

given x in MaxEnt:
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7.1 Features in Multinomial Logistic Regression

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and we would like to know whether to
assign the sentiment class +, �, or 0 (neutral) to a document. Here are five potential
features, representing that the document x contains the word great and the class is

Multiclass log. reg.

Thursday, September 21, 17


