Logistic regression classifiers

CS 585, Fall 2017

Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2017

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

[incl. slides from Ari Kobren]

Thursday, September 21, 17

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016

Naive Bayes: bag of words

Naive Bayes: bag of words

® BoW - Order independent

Naive Bayes: bag of words

® BoW - Order independent
® Can we add more features to the model?

Naive Bayes: bag of words

® BoW - Order independent
® Can we add more features to the model?

® NB assumes: Feature statistically independent, given class

Naive Bayes: bag of words

® BoW - Order independent
® Can we add more features to the model?

® NB assumes: Feature statistically independent, given class
® Examples of non-independent features?

Naive Bayes: bag of words

® BoW - Order independent
® Can we add more features to the model?

® NB assumes: Feature statistically independent, given class
® Examples of non-independent features?

® Correlated features => double counting

Naive Bayes: bag of words

® BoW - Order independent
® Can we add more features to the model?

® NB assumes: Feature statistically independent, given class
® Examples of non-independent features?

® Correlated features => double counting
® Can hurt classifier accuracy and calibration

Logistic regression

® | og Linear Model - a.k.a. Logistic regression classifier
® Kinda like Naive Bayes, but:

® Doesn’t assume features are independent

® Correlated features don’t “double count”
® Discriminative training: optimize p(y | text), not p(y, text)

® Jends to work better - state of the art for doc classif,
widespread hard-to-beat baseline for many tasks

® Good off-the-shelf implementations (e.g. scikit-learn)

Thursday, September 21, 17

® |Input document d (a string...) *

® Engineer a feature function, f(d), to generate feature vector x

f(d) S

Count of “happy”,

(Count of “happy”) / (Length of doc), Typically these use feature templates:
log(l + count of “happy”), Generate many features at once
Count of “not happy”,

f(d) — Count of words in my pre-specified for each word w:
word list, “positive words according - ${w} count
to my favorite psychological theory”, - ${w} log | plus_count
Count of “of the”, - ${w} with NOT before it count
Length of document, - e

® Not just word counts. Anything that might be useful!

® Feature engineering: when you spend a lot of trying and testing new features. Very
important!! This is a place to put linguistics in.

4

Thursday, September 21, 17

Negation

Das, Sanjivand Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock

message boards. In Proceedings of the Asia Pacific Finance Association Annual Conference (APFA).

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification
using Machine Learning Techniques. EMNLP-2002, 79—86.

Add NOT to every word between negation and following punctuation:

didn’t like this movie , but I

.

didn’t NOT like NOT this NOT movie but I

Thursday, September 21, 17

Classification: LogReqg ()

First, we'll discuss how LogReg works.

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReg (I)

First, we'll discuss how LogReg works.
Then, why Iit's set up the way that it is.

Application: spam filtering

Classification: LogReqg ()

e compute features (xs)

Classification: LogReqg ()

e compute features (xs)

L ; = (count “nigerian”, count “prince”, count “nigerian prince”)

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReqg ()

e compute features (xs)

L ; = (count “nigerian”, count “prince”, count “nigerian prince”)

e given weights (betas)

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReqg ()

e compute features (xs)

L ; = (count “nigerian”, count “prince”, count “nigerian prince”)

e given weights (betas)

B =(1.0, -10, 4.0)

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReg (I)

e compute features (x's)
e given weights (betas)
e compute the dot product

Classification: LogReg (I)

e compute features (x's)
e given weights (betas)
e compute the dot product

Classification: LogReg (lI)

e compute the dot product
| X |

& = Z /37:51%'
i=0

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReg (lI)

e compute the dot product
| X |

< = Zﬁz‘wi

e compute the Iogistici?&nction

LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

eeeeeeeeeeeeeeeeeeeeeee

LogReg Exercise

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReg
OK, let’s take this step by step... | X

& = Bix;
e Why dot product? ;

eeeeeeeeeeeeeeeeeeeeeee

Classification: LogReg
OK, let’s take this step by step... | X

& = Bix;
e \Why dot product? ;

e Why would we use the logistic function?

eeeeeeeeeeeeeeeeeeeeeee

Classification: Dot Product

Intuition: weighted sum of features

All linear models have this form!

eeeeeeeeeeeeeeeeeeeeeee

NB as Log-Linear Model

Recall that Naive Bayes is also a linear model...

eeeeeeeeeeeeeeeeeeeeeee

NB as Log-Linear Model

e \What are the features in Naive Bayes?

e \What are the weights in Naive Bayes?

eeeeeeeeeeeeeeeeeeeeeee

NB as Log-Linear Model

P(spam|D) o< P(spam) - H P(w;|spam)
w; €D

NB as Log-Linear Model

P(spam|D) o< P(spam) - H P(w;|spam)
w; €D

P(spam|D) o< P(spam) + H - P(w;|spam)™
w,; €EVocab

NB as Log-Linear Model

P(spam|D) o< P(spam) - H P(w;|spam)
w; ED

P(spam|D) < P(spam) - H - P(w;|spam)™:
w,; €EVocab

log[P(spam|D)] o log[P(spam)] +) ;- log[P(w;|spam)]
w,; EVocab

NB as log-linear model
len(D)
1
P(spam | D) = EP(Spam) H P(w; | spam)

t=1

1
P(spam | D) = EP(Spam) H P(w | spam)®*
weV

log P(spam | D) =log P(spam) + Z T, log P(w | spam)
weV
— log Z -

26

NB as Log-Linear Model

In both NB and LogReg

we compute the dot product!

eeeeeeeeeeeeeeeeeeeeeee

Logistic Function

What does this function look like?

What properties does it have?

eeeeeeeeeeeeeeeeeeeeeee

Logistic Function
Plz) = eze+ 1 1 +1e—z

eeeeeeeeeeeeeeeeeeeeeee

Logistic Function

e |ogistic function P(z): R — |0,1]

eeeeeeeeeeeeeeeeeeeeeee

Logistic Function

e |ogistic function P(z): R — |0,1]

e decision boundary is dot product = 0 (2 class)

Logistic Function

e |ogistic function P(z): R — |0,1]

e decision boundary is dot product = 0 (2 class)

o =2 48
L g
e comes from linear log odds e

NB vs. LogReg

e Both compute the dot product

e NB: sum of log probs; LogReg: logistic fun.

Learning Weights

e NB: learn conditional probabilities separately
via counting

e LogReg: learn weights jointly

Learning Weights

e given: a set of feature vectors and labels

e goal: learn the weights.

Learning Weights

oo o1 --- Tom Yo
rXio 11 ... Tim Y
Lno Lnl -+ Lnm Yn

n examples; xs - features; ys - class

eeeeeeeeeeeeeeeeeeeeeee

Learning Weights

We know:

So let’'s try to maximize probability of the entire
dataset - maximum likelihood estimation

Learning Weights

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

ﬁMLE

— argmg‘XIOgP(yo’,,_,ynlxo,...,Xn;,@)

Learning Weights

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

IBMLE — a’rgmﬁa’XlogP(yOa ¢ 7yn‘x07 AN 7Xn;/6)

| X

— arg mgx Z log P(yi|xi; 8)
i=0

Learning the weights

Maximize the training set’s (log-)likelihood!?

BMLE — arg max log p(y1--Yn|T1.- 20, B)

Z]

B Di lfyz' 1
1 .o n . n’ 1 z. z.’ 1

og p(Y1--Yn|T1..-Tn, B) ; g P(yilzi,) 7; {1 pi if y; 0}

where p; = p(y; = 1|z, B)

® No analytic form, unlike our counting-based
multinomials in NB, n-gram LM’s, or Model |I.

® Use gradient ascent: iteratively climb the log-
likelihood surface, through the derivatives for

each weight.
® Luckily, the derivatives turn out to look nice...

Gradient ascent

Loop while not converged (or as long as you can):
For all features J, compute and add derivatives:

By |

new) p(old) 0 (old)
B = B + m - £(BY)
J J 8 13]
_ o q ¢ :Training set log-likelihood

T]: Step size (a.k.a. learning rate)

/ ’;-:"'—;:x;-::;\->*-:|"“'"'4_ T (ot . ot) : Gradient vector
[(- /"'/,,-f" 01 0By (vector of per-element
N /] derivatives)

y This is a generic optimization technique.
-1 Not specific to logistic regression! Finds

the maximizer of any function where
B , You can compute the gradient.

Thursday, September 21, 17

Perceptron learning algorithm
(binary classif.)

42

Perceptron learning algorithm
(binary classif.)

® Close cousin of MLE gradient ascent

® | oop through dataset many times. For each example:
® Predict = argmaxy p(y | X, B)
o |f Ypred |= Ygold.

® B += (ygold — Ypred) X

® Does this converge and when!
® |f no errors, finishes. If not linearly separable: doesn’t converge

® VWhat does an update do!
® c.g. for false negative: Increase weights for features in example

42

LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

eeeeeeeeeeeeeeeeeeeeeee

LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

B0) =(1.0, -3.0, 2.0)| =—) 63% accuracy

B(1) =(0.5, -1.0, 3.0)| w—

eeeeeeeeeeeeeeeeeeeeeee

LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

B0) =(1.0, -3.0, 2.0)| =—) 63% accuracy

B(1) =(0.5, -1.0, 3.0)| w—

B2 = (1.0, 1.0, 4.0)| e—

eeeeeeeeeeeeeeeeeeeeeee

Pros & Cons

e LogReg doesnt assume independence
o Dbetter calibrated probabilities

e NB is faster to train; less likely to overfit

NB & Log Reg

e Both are linear models:

e Training is different:
o NB: weights trained independently
o LogReg: weights trained jointly

LogReg: Important Detalls!

e Overfitting / regularization
e \isualizing decision boundary / bias term
e Multiclass LogReg

You can use scikit-learn (python) to test it out!

Regularization

® Just like in language models, there’s a danger of overfitting the
training data. (For LM’s, how did we combat this?)

® One method is count thresholding: throw out features that occur

in < L documents (e.g. L=5). This is OK, and makes training
faster, but not as good as....

® Regularized logistic regression: add a new term to penalize
solutions with large weights. Controls the bias/variance
tradeoff.

5MLE — arg mgx [10gp(?/1--yn\fl31--$m 5)]

BRes = argmax |log p(y1.-Yn|21..2n, B) — XY (B))°

B .
L / J
“Regularizer constant™: v

Strength of penalty or 12 reguarizer

12

Squared distance from origin

Thursday, September 21, 17

Visualizing a classifier in feature space

“Biasiterm”
Feature vector r = (1, count “happy”, count “hello”,...)

Weights/parameters (3 =

50% prob where | 0

Bz =0 _ X

Predict y=1 wh £

rfer Ict y=1 when S 0 X

,B r > O -QC) ¢ = \ 0O

Predict)’=0 when \g - X \

Blz <0 3 »

O O

6: 1 1 ——— s Gt

| &
= | A | | | | | |

o ﬁi’rm 0 1 2 3 4 5

Count(“happy”’)

Thursday, September 21, 17

Binary vs. Multiclass

® Binary logreg: let x be a feature vector for the doc,and y either O or |

< T
ply=1l2,8) = = f}ff(ET)@

3 is a weight vector across the x features.

® Multiclass logistic regression, in “log-linear” form:
Features are jointly of document and output class

p(C|x) — % exp Z Wifi(C,x) w is a weight vector across the x features.
l

51

Thursday, September 21, 17

Multiclass log. reg.

plel) = ~exp (Zwiﬁ-(c,x))

N
exp (Z wl-fi(c,x))

p(clx) =

> exp (Zwlf, ¢ x)

c'eC

52

Multiclass log. reg.

1
file.x) = 1 if “great” e x & c=+ p(c\x) — 2 CXP E Wifi(cpx)
RS0 0 otherwise i

1 1if “second-rate” € x & ¢c= —
fa(c,x) = .

0 otherwise

=. 0.7

1 if “no”ex & ¢c=— 0.8, =
/3 (C ,X) — { : - ... there are virtually@osurprises, and the .-~

0 otherwise o Wwriting isGecond-rai®So why did IE€ajop it

I if “enjoy” €x & ¢ = — -~~~ 'somuch? For one thing, the cast is@ead 1.9

o 5 +
c,x) = .

fale,x) { 0 otherwise

IDTNIVINE Some features and their weights for the positive and negative classes. Note the
negative weight for enjoy meaning that it 1s evidence against the class negative —.

53

Thursday, September 21, 17

