

Text: $P(w_1, w_2, w_3, \dots, w_N) \Rightarrow \text{oooooo}$ Σ

Probabilistic Language Models

- Today's goal: assign a probability to a sentence or text
 - Machine Translation:
 - $P(\text{high winds tonite}) > P(\text{large winds tonite})$
 - Spell Correction
 - The office is about fifteen minuets from my house
 - $P(\text{about fifteen minutes from}) > P(\text{about fifteen minuets from})$
 - Speech Recognition
 - $P(\text{I saw a van}) \gg P(\text{eyes awe of an})$
 - + Summarization, question-answering, etc., etc.!!

Why?

9/12/17

UMass CS 585, Intro to NLP

Slides: SLP website

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:
 $w_i \in V$ (vocabulary)
 $P(W) = P(w_1, w_2, w_3, w_4, w_5 \dots w_n)$
- Related task: probability of an upcoming word:
 $P(w_5 | w_1, w_2, w_3, w_4)$
- A model that computes either of these:
 $P(W)$ or $P(w_n | w_1, w_2 \dots w_{n-1})$ is called a **language model**.
- Better: **the grammar** But **language model** or **LM** is standard

$$P(A \cap B) = P(A|B) P(B)$$

$$P(A \cap B \cap C) = P(A|BC) P(BC)$$
$$= P(A|BC) P(B|C) P(C)$$

How to compute $P(W)$

- How to compute this joint probability:

- $P(\text{its, water, is, so, transparent, that})$

$$P(w_4 = \text{so} | (w_1, w_2, w_3) = (\text{its, water, is}))$$

- Intuition: let's rely on the Chain Rule of Probability

$$P(w_1 \dots w_N) = \prod_{i=1}^N P(w_i | w_1, w_2, \dots, w_{i-1})$$

↓↓

Cond. Prob. first over \vee

($\langle \text{START} \rangle, \text{it}, \text{water}, \text{is}, \dots \rangle$)

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_1 \dots w_{i-1})$$

$$\log P(\dots) = \sum_i \log P(w_i | w_1 \dots w_{i-1})$$

Intuition of Perplexity

- The Shannon Game:
 - How well can we predict the next word?

I always order pizza with cheese and _____

The 33rd President of the US was _____

I saw a _____

 - Unigrams are terrible at this game. (Why?)
- A better model of a text
 - is one which assigns a higher probability to the word that actually occurs

mushrooms 0.1
 pepperoni 0.1
 anchovies 0.01

 fried rice 0.0001

 and 1e-100

N-Gram LMs

How to estimate these probabilities

- Could we just count and divide?

Bad: Large / long contexts
↓↓

$P(\text{the} | \text{its water is so transparent that}) =$

$\frac{\text{Count}(\text{its water is so transparent that the})}{\text{Count}(\text{its water is so transparent that})}$

$\approx \frac{3}{10^6, 10^9}$

- No! Too many possible sentences!
- We'll never see enough data for estimating these

Phrase len $K \Rightarrow |V|^K$ possible strings

Markov Assumption

Andrei Markov

- Simplifying assumption:

$P(\text{the } \text{I} \text{ its water is so transparent that}) \approx P(\text{the } \text{I} \text{ that})$

“Length 1 history MM”

- Or maybe

$P(\text{the } \text{I} \text{ its water is so transparent that}) \approx P(\text{the } \text{I} \text{ transparent that})$

“Length 2 history MM”

“Second-order MM”

Markov Assumption

size k

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i | w_{i-k} \dots w_{i-1})$$

- In other words, we approximate each component in the product

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

Simplest case: Unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

- Condition on the previous word:

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-1})$$

if $w_{i-1} \neq \text{None}$

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has **long-distance dependencies**:

“The computer which I had just put into the machine room on the fifth floor crashed.”

- But we can often get away with N-gram models

Estimating bigram probabilities

- The Maximum Likelihood Estimate

from training corpus

$$P(w_i | w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}$$

$$P(\text{can } + \text{the}) = \frac{C[\text{"can the"}]}{C[\text{"the"}]}$$

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Sparsity! Is bad

Raw bigram counts

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0