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bution over initial and accepting states explicitly. We don’t use the p notation in this
textbook, but you may see it in the literature1:

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i. Some
states j may have p j = 0, meaning that they cannot be initial
states. Also,

Pn
i=1 pi = 1

QA = {qx,qy...} a set QA ⇢ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (7.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (7.7)

Figure 7.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.
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Figure 7.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 7.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network
HMMs, the state transitions proceed from left to right, as shown in Fig. 7.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 25.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.
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We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 3.
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Figure 7.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. 7.19: vt( j) = max1iN�1 vt�1(i) ai j b j(ot). The resulting probability expressed in each cell is
Eq. 7.18: vt( j) = P(q0,q1, . . . ,qt�1,o1,o2, . . . ,ot ,qt = j|l ).

Figure 7.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt�1, given
the automaton l . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt�1

P(q0,q1...qt�1,o1,o2 . . .ot ,qt = j|l ) (7.18)
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Figure 7.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.
The figure shows the computation of at( j) for two states at two time steps. The computation in each cell
follows Eq. 7.14: at( j) =

PN
i=1 at�1(i)ai jb j(ot). The resulting probability expressed in each cell is Eq. 7.13:

at( j) = P(o1,o2 . . .ot ,qt = j|l ).

Consider the computation in Fig. 7.7 of a2(2), the forward probability of being at
time step 2 in state 2 having generated the partial observation 3 1. We compute by ex-
tending the a probabilities from time step 1, via two paths, each extension consisting
of the three factors above: a1(1)⇥P(H|H)⇥P(1|H) and a1(2)⇥P(H|C)⇥P(1|H).

Figure 7.8 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. 7.9 and a statement of the definitional recursion here.

1. Initialization:

a1( j) = a0 jb j(o1) 1  j  N (7.15)

2. Recursion (since states 0 and F are non-emitting):

at( j) =
NX

i=1

at�1(i)ai jb j(ot); 1  j  N,1 < t  T (7.16)

3. Termination:

P(O|l ) = aT (qF) =
NX

i=1

aT (i)aiF (7.17)
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