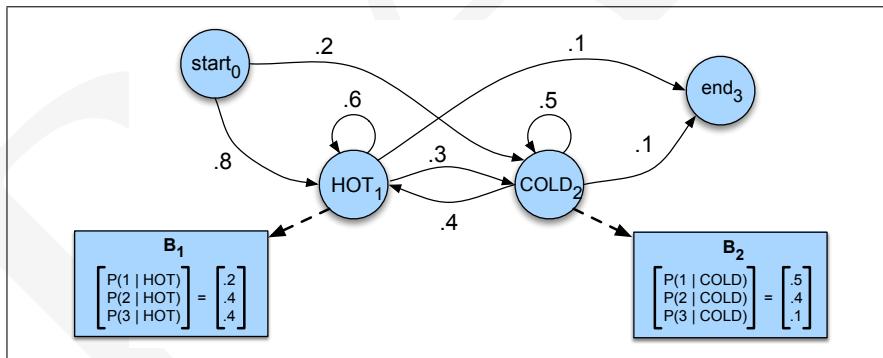


From J&M chapter 7 -- Jason Eisner's ice cream / weather HMM example.

This is Eisner ---->  
(Associate Professor, John Hopkins University)

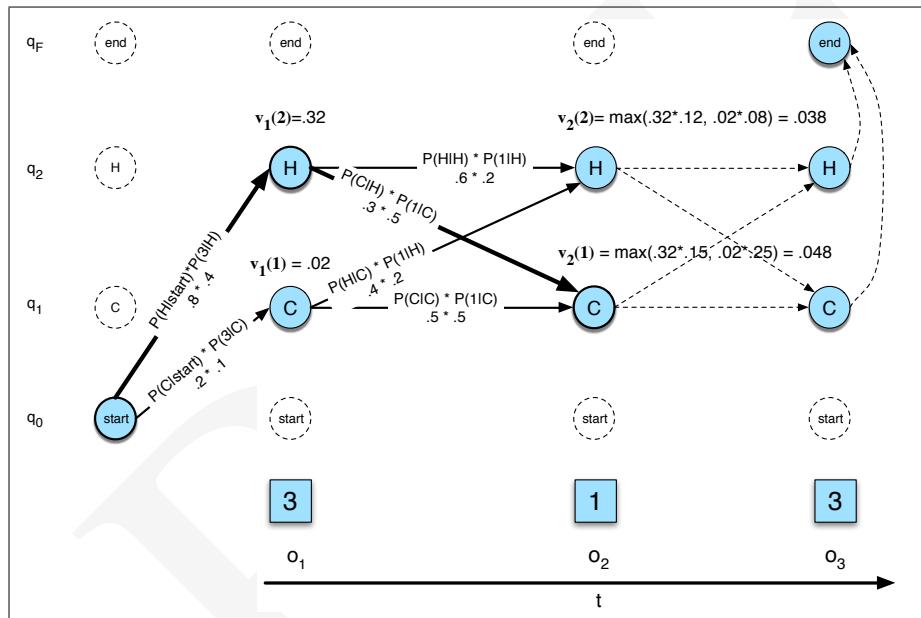


## Model



**Figure 7.3** A hidden Markov model for relating numbers of ice creams eaten by Jason (the observations) to the weather (H or C, the hidden variables).

## Viterbi algorithm



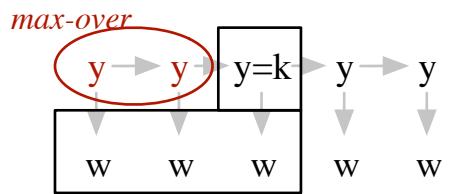
**Figure 7.10** The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of  $v_t(j)$  for two states at two time steps. The computation in each cell follows Eq. 7.19:  $v_t(j) = \max_{1 \leq i \leq N-1} v_{t-1}(i) a_{ij} b_j(o_t)$ . The resulting probability expressed in each cell is Eq. 7.18:  $v_t(j) = P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j | \lambda)$ .

## Declaratively:

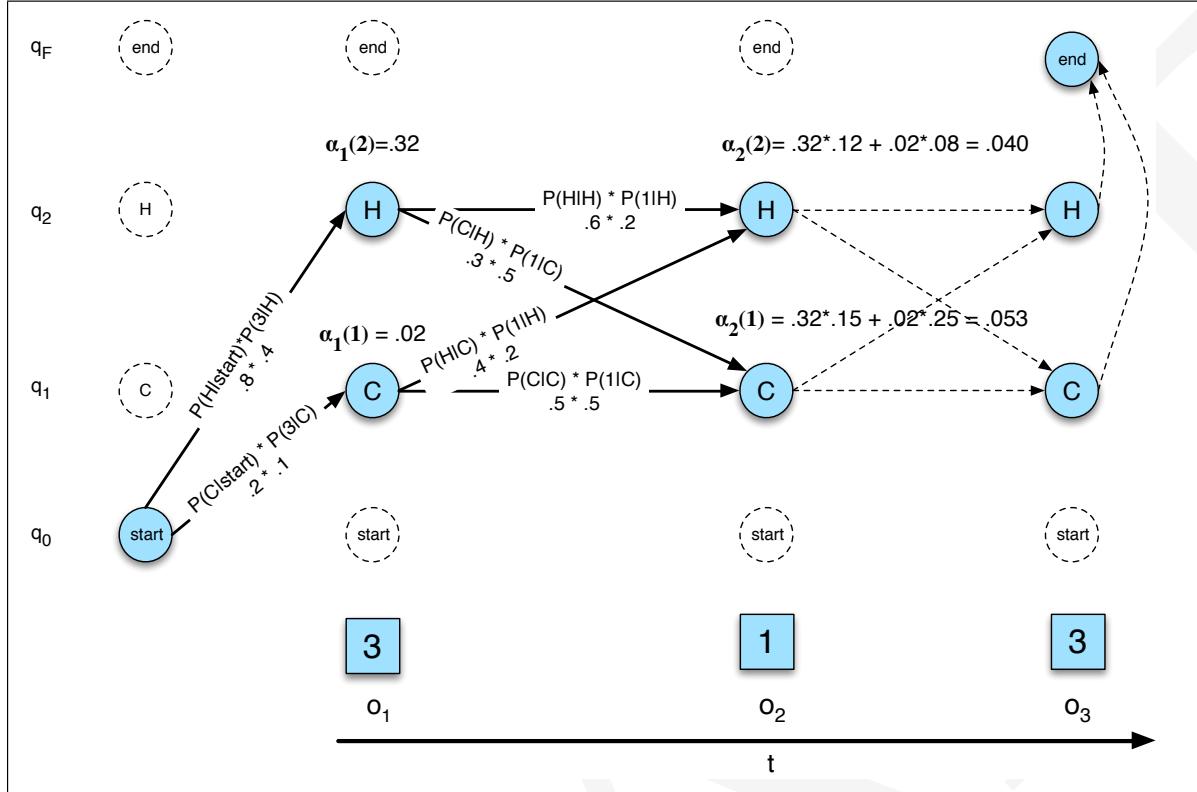
$$V_t[k] = \max_{y_1 \dots y_{t-1}} P(y_t = k, y_1 \dots y_{t-1}, w_1 \dots w_t)$$

**Algorithm**, for each  $t=1..N$ ,

$$V_t[k] := \max_{j=1..K} \left( V_{t-1}[j] P_{trans}(j \rightarrow k) P_{emit}(w_t | k) \right)$$

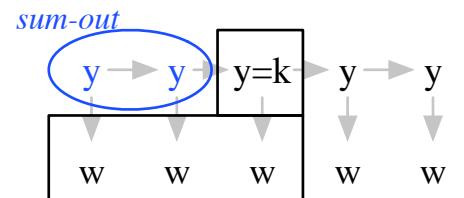


## Forward algorithm



**Figure 7.7** The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of  $\alpha_t(j)$  for two states at two time steps. The computation in each cell follows Eq. 7.14:  $\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t)$ . The resulting probability expressed in each cell is Eq. 7.13:  $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$ .

## Forward



### Declaratively:

$$\alpha_t[k] = \sum_{y_1 \dots y_t} P(y_t = k, w_1 \dots w_t, y_1 \dots y_{t-1})$$

**Algorithm**, for each  $t=1..N$ ,

$$\alpha_t[k] := \sum_{j=1..K} \left( \alpha_{t-1}[j] P_{trans}(j \rightarrow k) P_{emit}(w_t | k) \right)$$