This is Eisner ---->

From J&M chapter 7 -- Jason Eisner's (Associate
ice cream / weather HMM example. Professor,
John
Model Hopkins
University)
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ISTCR] A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Viterbi algorithm
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The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 / 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of v, (j) for two states at two time steps. The computation in each
cell follows Eq. 7.19: v;(j) = max<j<y—1 vi—1(i) aij bj(o;). The resulting probability expressed in each cell is
Eq. 7.18: vi(j) = P(90,q1:---+91-1,01,02,---,01,q; = j|A).

max-oy

Declaratively:

Vilk] = max P(y: =k, y1..Yt—1,Ww1..w¢)
Y1.--Yt—1

Algorithm, for each t=1..N,

V;f[k'] = jr:nla}é( ‘/t—l[.]] Ptrans(j — k) Pemit(wt‘k)



Forward algorithm
dr ll\end\/‘, (\end /‘, l’\end\/\:
,(2)=.32 ,(2)= .32".12 + .02".08 = .040 !
O P(HIH) * P(11H) Lo
v H o * et bl ket bt Il
. O o
"~ /
.3 "5 /C) . s /
D @ o /
) = .32 Wz, =. /
L amo0z .o ay(1) = 32°.15 + 0225 = 053 /
& w2 R
ay o o __P(CIO) * P(1I0) > A — /
A S 5*5
&
QA
ECR
do @ (\ start/‘, l’\ start/‘, l’\ start/‘:
3 1 3
0, 0 O3
>
t
IBTu VMl  The forward trellis for computing the total observation likelihood for the ice-cream events 3 /
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.

The figure shows the computation of o (j) for two states at two time steps. The computation in each cell
follows Eq. 7.14: o4 (j) = Y . %—1(i)aijbj(o;). The resulting probability expressed in each cell is Eq. 7.13:

0y (j) = P(01,02...01,qr = j|A).

Forward
Declaratively: sum-out
y=k
ay[k] = Z P(ys =k, wi.we, y1..y4-1)
W W W

Y1.--Yt
Algorithm, for each t=1..N,

Oét[k] = Z Oét—l[j] Ptrans(j — k) Pemz’t<wt‘k)
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