
Coreference

CS 685, Spring 2021

Advanced Topics in Natural Language Processing


http://brenocon.com/cs685

https://people.cs.umass.edu/~brenocon/cs685_s21/


Brendan O’Connor

College of Information and Computer Sciences


University of Massachusetts Amherst

http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685_s21/


• No class on Tues this week!


• Progress reports: due April 30.


• Final in-class presentations: May 3.


• HW3 cancelled / turned into some extra credit 
questions 
 

• Also! HCI & NLP workshop tomorrow


• Can write up a talk for HW3 extra credit


• We'll post joining info to our slack (zoom/gather)
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Noun phrase reference

3

Barack Obama nominated Hillary Rodham Clinton 
as his secretary of state.  He chose her because she 
had foreign affairs experience.

Referring expressions reference discourse entities

e.g. real-world entities
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Referring expressions reference discourse entities

e.g. real-world entities

(... or non-real-world)

Noun phrase reference
http://harrypotter.wikia.com/wiki/Harry_Potter

Harry James Potter (b. 31 July, 1980) was 
a half-blood wizard, the only child and son 
of James and Lily Potter (née Evans), and 
one of the most famous wizards of modern 
times ... Lord Voldemort attempted to 
murder him when he was a year and three 
months old ...

Applications: text inference, search, etc.

   - Who tried to kill Harry Potter?

http://harrypotter.wikia.com/wiki/Harry_Potter
http://harrypotter.wikia.com/wiki/31_July
http://harrypotter.wikia.com/wiki/1980
http://harrypotter.wikia.com/wiki/Half-blood
http://harrypotter.wikia.com/wiki/Wizardkind
http://harrypotter.wikia.com/wiki/James_Potter_I
http://harrypotter.wikia.com/wiki/Lily_Evans
http://harrypotter.wikia.com/wiki/Evans


an Entity or Referent is a ~real-world object (discourse entity)

    (“HARRY_POTTER_CONCEPT”)
Referring expressions a.k.a. Mentions
    14 NPs are underlined above (are they all referential?)

Coreference: when referring mentions have the same referent.

Coreference resolution: find which mentions refer to the same entity.  
I.e. cluster the mentions into entity clusters.

http://harrypotter.wikia.com/wiki/Harry_Potter

Harry James Potter (b. 31 July, 1980) was 
a half-blood wizard, the only child and son 
of James and Lily Potter (née Evans), and 
one of the most famous wizards of modern 
times ... Lord Voldemort attempted to 
murder him when he was a year and three 
months old ...

Applications: text inference, search, etc.

   - Who tried to kill Harry Potter?

Noun phrase reference

http://harrypotter.wikia.com/wiki/Harry_Potter
http://harrypotter.wikia.com/wiki/31_July
http://harrypotter.wikia.com/wiki/1980
http://harrypotter.wikia.com/wiki/Half-blood
http://harrypotter.wikia.com/wiki/Wizardkind
http://harrypotter.wikia.com/wiki/James_Potter_I
http://harrypotter.wikia.com/wiki/Lily_Evans
http://harrypotter.wikia.com/wiki/Evans


• Application: analyze information exchange between characters in a book


• Book-scale coreference is a prerequisite


• Sims and Bamman 2020
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https://www.aclweb.org/anthology/2020.emnlp-main.47/
http://www.apple.com


Related tasks

• Within-document coreference


• Entity Linking — named entity recognition with 
coreference against an entity database (predict 
entity ID for text spans)


• Record linkage — entity coreference between 
structured databases
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Reference(Resolution(

•  Noun(phrases(refer(to(entities(in(the(world,(many(
pairs(of(noun(phrases(coKrefer,(some(nested(inside(
others(

John(Smith,(CFO(of(Prime(Corp.(since(1986,((

saw((his(pay(jump(20%(to($1.3(million((

as(the(57KyearKold(also(became((

the(financial(services(co.’s(president.(

Noun phrase coreference
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In-class quiz for grad-level NLP

October 9, 2013

Do within-document coreference in the following document by assigning the mentions entity numbers:

[The government]��� said [today]��� [it]��� ’s going to cut back on [[[the enormous number]���
of [people]���]��� who descended on [Yemen]��� to investigate [[the attack]��� on [the “ USS

Cole]���]���]���. ” [[[So many people]��� from [several agencies]���]���]��� wanting to par-

ticipate that [the Yemenis]��� are feeling somewhat overwhelmed in [[their]��� own country]���.

[Investigators]��� have come up with [[another theory]��� on how [the terrorists]��� operated]���.

[[ABC ’s]��� John Miller]��� on [[the house]��� with [a view]���]���. High on [[a hillside]���, in

[[a run - down section]��� of [Aden]���]���]���, [[the house]��� with [the blue door]���]��� has

[[a perfect view]��� of [the harbor]���]���. [American and Yemeni investigators]��� believe [that

view]��� is what convinced [[a man]��� who used [[the name]��� [Abdullah]���]���]��� to rent

[the house]��� [several weeks]��� before [[the bombing]��� of [the “ USS Cole]���]���. ” Early

on [investigators]��� theorized [it]��� was [an inside job]��� and [[much]��� of [the focus]���]���
was on [[employees]��� of [[the Mansoon shipping company]���, which was under [[contract]��� by

[the Navy]��� to refuel [U.S. warships]���]��� and would have had [[advance information]��� about

[[the “ Cole ’s ”]��� arrival]���]���]���]���. Now [the FBI]��� believes [[all]��� [the terrorists]���
needed to do]��� was look out [the window]���, to go through [precisely the same drill]���, well before

[the “ Cole ”]��� [arrived]���. [[The man]��� in [this house]���]��� would have had [[plenty]��� of

[[time]��� to signal [[two bombers]��� waiting with [the boat]��� across [the bay]���]���]���]���.

[Investigators]��� say [[clues]��� collected over [the last few days]���]��� have already pointed

[them]��� to [[locations]��� both near and far outside [[the port city]��� of [Aden]���]���]���,

but [they]��� wo n’t say [there]��� ’s [any indication that [[the plot]��� here]��� goes beyond

[[Yemen ’s]��� boarders]���]���. Learning [[the true identities]��� of [[those]��� involved in [the

bombing]���]���]��� would help answer [that question]���, but [the two suicide bombers]��� died in

[the attack]���, and after [the explosion]���, [[the man]��� who lived behind [the blue door]���]���
simply vanished. [John Miller]���, [ABC News]���, [Aden]���.
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Kinds(of(Reference(
•  Referring(expressions(
– John%Smith%
– President%Smith%
–  the%president%
–  the%company’s%new%executive%

•  Free(variables(
– Smith(saw(his%pay%increase(

•  Bound(variables((
– The(dancer(hurt(herself.(

More(interesting(
grammatical(
constraints,(
more(linguistic(
theory,(easier(in(
practice(

“anaphora(
resolution”(

More(common(in(
newswire,(generally(
harder(in(practice(



Syntactic vs Semantic cues
• Lexical cues


• I saw a house.  The house was red.

• I saw a house.  The other house was red.


• Syntactic cues

• John bought himself a book.

• John bought him a book.


• Lexical semantic cues

• John saw Mary.  She was eating salad.

• John saw Mary.  He was eating salad.


• Deeper semantics (world knowledge)

• The city council denied the demonstrators a permit 

because they feared violence.

• The city council denied the demonstrators a permit 

because they advocated violence.

• State-of-the-art coref uses with the first three 
(unless NNs are learning the 4th? Probably not…)



Coreference approaches

• Dialogue vs. documents


• Architectures


• Mention-Mention linking


• Entity-Mention linking


• Models


• Rule-based approaches (e.g. sieves)


• Supervised ML, end-to-end NNs


• Datasets: Ontonotes, CoNLL shared tasks (newspapers)


• Available systems (documents)


• CoreNLP (many variants)


• BookNLP (supervised, works on book-length texts)


• Berkeley Coref ... etc. etc.
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DE MARNEFFE, RECASENS & POTTS
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Figure 1: Distribution of referent lifespans in the 2012 OntoNotes development set.

5. Predicting Lifespans with Linguistic Features

We now describe our model for predicting the lifespan of discourse referents using the linguistic
factors proposed in Section 2. The model makes a binary distinction between discourse referents
that are not part of a coreference chain (singleton) and those that are part of one (coreferent). The
distribution of lifespans in our data is shown in Figure 1.

This plot gives the number of entities associated with a single mention, the number associated
with two mentions, and so forth. The fact that singletons so dominate the data suggests that the bi-
nary singleton/coreferent division is a natural one. The propensity toward singletons also highlights
the relevance of detecting singletons for a coreference system. Following Bergsma and Yarowsky
(2011), we use a logistic regression model, which has been shown to perform well on a range of
NLP tasks. We fit the logistic regression model in R (R Development Core Team, 2013) on the train-
ing data, coding singletons as ‘0’ and coreferent mentions as ‘1’. Thus, throughout the following
tables of coefficient estimates, positive values favor coreferent mentions and negative values favor
singletons. We turn now to describing and motivating the features of this model.

5.1 Morphosyntax of the Mention

Table 2 summarizes the features from our model that concern the internal morphology and syntactic
structure of the mention, giving their coefficient estimates. In all the tables, if not indicated oth-
erwise, the coefficient estimates are significant at p < 0.001. We use ⇤ to indicate significance at
p < 0.05, and † to indicate estimates with p � 0.05. The morphosyntactic features include type
(‘pronoun’, ‘proper noun’, ‘common noun’), animacy, named-entity tag, person, number, quantifi-
cation (‘definite’, ‘indefinite’, ‘quantified’), and number of modifiers of the mention. Many are
common in coreference systems (Recasens & Hovy, 2009), but our model highlights their influence
on lifespans. Where available, we used gold annotations to derive our features, since our primary
goal is to shed light on the relevance of the features claimed to influence lifespans.

454

[de Marneffe et al. 2015]



Supervised ML:�
Mention pair model
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Hary Potter was a wizard.  Lord Voldemort attempted to murder him.

• View gold standard as defining links between 
mention pairs


• Think of as binary classification problem: take 
random pairs as negative examples


• Issues: many mention pairs.  Also: have to resolve 
local decisions into entities



Antecedent selection model
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• View as antecedent selection problem: which previous mention 
do I corefer with?


• Makes most sense for pronouns, though can use model for all 
expressions


• Process mentions left to right. For the n’th mention, it’s a n-way 
multi-class classification problem: antecedent is one of the n-1 
mentions to the left, or NULL.


• Features are asymmetric!


• Use a limited window for antecedent candidates, e.g. last 5 
sentences (for news...)


• Score each candidate by a linear function of features. 
Predict antecedent to be the highest-ranking candidate.

Hary Potter was a wizard.  Lord Voldemort attempted to murder him.

?
?

?

[NULL]
?



Antecedent selection model
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• Training: simple way is to process the gold standard 
coref chains (entity clusters) into positive and 
negative links.  Train binary classifier.


• Prediction: select the highest-scoring candidate as 
the antecedent.  (Though multiple may be ok.)


• Using for applications: take these links and form 
entity clusters from connected components  
[whiteboard]

Hary Potter was a wizard.  Lord Voldemort attempted to murder him.

?
?

?

[NULL]
?



Features for pronoun resolution

• English pronouns have some grammatical markings 
that restrict the semantic categories they can match.  
Use as features against antecedent candidate 
properties.


• Number agreement


• he/she/it vs. they/them


• Animacy/human-ness? agreement


• it vs. he/she/him/her/his


• Gender agreement


• he/him/his vs. she/her vs. it


• Grammatical person - interacts with dialogue/
discourse structure


• I/me vs you/y’all vs he/she/it/they

18



Other syntactic constraints

• High-precision patterns


• Predicate-Nominatives: “X was a Y …”


• Appositives:  “X, a Y, …”


• Role Appositives: “president Lincoln”

19



Features for Pronominal Anaphora 
Resolution 

•  Preferences:%
–  Recency:%More%recently%men2oned%en22es%are%more%
likely%to%be%referred%to%

•  John%went%to%a%movie.%Jack%went%as%well.%He%was%not%busy.%

– Gramma2cal%Role:%En22es%in%the%subject%posi2on%is%
more%likely%to%be%referred%to%than%en22es%in%the%object%
posi2on%

•  John%went%to%a%movie%with%Jack.%He%was%not%busy.%%

–  Parallelism:%%
•  John%went%with%Jack%to%a%movie.%Joe%went%with%him%to%a%bar.%

%



Recency

• Not too recent, but can override


• (1) John likes him


• (2) John likes his mother


• (3) John likes himself


• (4) John likes that jerk 

• Typical relative distances [via Brian Dillon, UMass Ling.]

• reflexive < possessive < pronoun < anaphoric NP


• Salience:  Subject of previous sentence is typical 
antecedent for a pronoun


• Hobbs distance on constituent trees
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Features for Pronominal Anaphora 
Resolution 

•  Preferences:%
–  Verb%Seman2cs:%Certain%verbs%seem%to%bias%whether%
the%subsequent%pronouns%should%be%referring%to%their%
subjects%or%objects%

•  John%telephoned%Bill.%He%lost%the%laptop.%
•  John%cri2cized%Bill.%He%lost%the%laptop.%

–  %Selec2onal%Restric2ons:%Restric2ons%because%of%
seman2cs%

•  John%parked%his%car%in%the%garage%aber%driving%it%around%for%
hours.%%

•  Encode%all%these%and%maybe%more%as%features%

%



Features for non-pronoun resolution

• Generally harder!


• String match


• Head string match


• I saw a green house.  The house was old.


• Substrings, edit distance


• For names: Jaro-Winkler edit distance...


• Cross-document coreference and entity linking

• Name matching: string comparisons


• Contextual information

23



End-to-end neural coref
• Traditional architectures: mention detection, then mention linking


• End-to-end: directly compare all/most spans


• For each span i   (all T(T-1)/2 or T(maxwidth) of them),


• Predict antecedent yi ∈ {NULL, 1, 2, … i-1}

• sm mention score: is the span a mention?


• This is weirdly effective in a way specific to their training set, IMO


• sa antecedent score: are two spans linked?


• Naively O(T^4) runtime; aggressively prune based on sm 
(mention detection as pruning)

24 [Lee et al. (2017)]

nesses of the approach.

2 Related Work

Machine learning methods have a long history

in coreference resolution (see Ng (2010) for a

detailed survey). However, the learning prob-

lem is challenging and, until very recently, hand-

engineered systems built on top of automati-

cally produced parse trees (Raghunathan et al.,

2010) outperformed all learning approaches.

Durrett and Klein (2013) showed that highly lex-

ical learning approaches reverse this trend, and

more recent neural models (Wiseman et al., 2016;

Clark and Manning, 2016b,a) have achieved sig-

nificant performance gains. However, all of these

models use parsers for head features and in-

clude highly engineered mention proposal algo-

rithms.1 Such pipelined systems suffer from two

major drawbacks: (1) parsing mistakes can intro-

duce cascading errors and (2) many of the hand-

engineered rules do not generalize to new lan-

guages.

A non-pipelined system that jointly models

mention detection and coreference resolution was

first proposed by Daumé III and Marcu (2005).

They introduce a search-based system that pre-

dicts the coreference structure in a left-to-right

transition system that can incorporate global fea-

tures. In contrast, our approach performs well

while making much stronger independence as-

sumptions, enabling straightforward inference.

More generally, a wide variety of approaches

for learning coreference models have been pro-

posed. They can typically be categorized as

(1) mention-pair classifiers (Ng and Cardie,

2002; Bengtson and Roth, 2008), (2)

entity-level models (Haghighi and Klein,

2010; Clark and Manning, 2015, 2016b;

Wiseman et al., 2016), (3) latent-tree mod-

els (Fernandes et al., 2012; Björkelund and Kuhn,

2014; Martschat and Strube, 2015), or (4)

mention-ranking models (Durrett and Klein,

2013; Wiseman et al., 2015; Clark and Manning,

2016a). Our span-ranking approach is most

similar to mention ranking, but we reason over

a larger space by jointly detecting mentions and

predicting coreference.

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

3 Task

We formulate the task of end-to-end coreference

resolution as a set of decisions for every possible

span in the document. The input is a document D

containing T words along with metadata such as

speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=
N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y

′))

where s(i, j) is a pairwise score for a coreference

link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=
N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y

′))

where s(i, j) is a pairwise score for a coreference

link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.
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Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every

nesses of the approach.

2 Related Work

Machine learning methods have a long history

in coreference resolution (see Ng (2010) for a

detailed survey). However, the learning prob-

lem is challenging and, until very recently, hand-

engineered systems built on top of automati-

cally produced parse trees (Raghunathan et al.,

2010) outperformed all learning approaches.

Durrett and Klein (2013) showed that highly lex-

ical learning approaches reverse this trend, and

more recent neural models (Wiseman et al., 2016;

Clark and Manning, 2016b,a) have achieved sig-

nificant performance gains. However, all of these

models use parsers for head features and in-

clude highly engineered mention proposal algo-

rithms.1 Such pipelined systems suffer from two

major drawbacks: (1) parsing mistakes can intro-

duce cascading errors and (2) many of the hand-

engineered rules do not generalize to new lan-

guages.

A non-pipelined system that jointly models

mention detection and coreference resolution was

first proposed by Daumé III and Marcu (2005).

They introduce a search-based system that pre-

dicts the coreference structure in a left-to-right

transition system that can incorporate global fea-

tures. In contrast, our approach performs well

while making much stronger independence as-

sumptions, enabling straightforward inference.

More generally, a wide variety of approaches

for learning coreference models have been pro-

posed. They can typically be categorized as

(1) mention-pair classifiers (Ng and Cardie,

2002; Bengtson and Roth, 2008), (2)

entity-level models (Haghighi and Klein,

2010; Clark and Manning, 2015, 2016b;

Wiseman et al., 2016), (3) latent-tree mod-

els (Fernandes et al., 2012; Björkelund and Kuhn,

2014; Martschat and Strube, 2015), or (4)

mention-ranking models (Durrett and Klein,

2013; Wiseman et al., 2015; Clark and Manning,

2016a). Our span-ranking approach is most

similar to mention ranking, but we reason over

a larger space by jointly detecting mentions and

predicting coreference.

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

3 Task

We formulate the task of end-to-end coreference

resolution as a set of decisions for every possible

span in the document. The input is a document D

containing T words along with metadata such as

speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=
N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y

′))

where s(i, j) is a pairwise score for a coreference

link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.[Lee et al. (2017)]
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.
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Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.
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spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:
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link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.
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where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

Span representation uses 
attention mechanism, in order 
to get syntactic head info

[Lee et al. (2017)]
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General Electric said the Postal Service contacted the company

General Electric
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+

the Postal Service

+
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+
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Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).
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scribe in detail in the following section. Given

these span representations, the scoring functions
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neural networks:
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sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every

nesses of the approach.

2 Related Work

Machine learning methods have a long history

in coreference resolution (see Ng (2010) for a

detailed survey). However, the learning prob-

lem is challenging and, until very recently, hand-

engineered systems built on top of automati-

cally produced parse trees (Raghunathan et al.,

2010) outperformed all learning approaches.

Durrett and Klein (2013) showed that highly lex-

ical learning approaches reverse this trend, and

more recent neural models (Wiseman et al., 2016;

Clark and Manning, 2016b,a) have achieved sig-

nificant performance gains. However, all of these

models use parsers for head features and in-

clude highly engineered mention proposal algo-

rithms.1 Such pipelined systems suffer from two

major drawbacks: (1) parsing mistakes can intro-

duce cascading errors and (2) many of the hand-

engineered rules do not generalize to new lan-

guages.

A non-pipelined system that jointly models

mention detection and coreference resolution was

first proposed by Daumé III and Marcu (2005).

They introduce a search-based system that pre-

dicts the coreference structure in a left-to-right

transition system that can incorporate global fea-

tures. In contrast, our approach performs well

while making much stronger independence as-

sumptions, enabling straightforward inference.

More generally, a wide variety of approaches

for learning coreference models have been pro-

posed. They can typically be categorized as

(1) mention-pair classifiers (Ng and Cardie,

2002; Bengtson and Roth, 2008), (2)

entity-level models (Haghighi and Klein,

2010; Clark and Manning, 2015, 2016b;

Wiseman et al., 2016), (3) latent-tree mod-

els (Fernandes et al., 2012; Björkelund and Kuhn,

2014; Martschat and Strube, 2015), or (4)

mention-ranking models (Durrett and Klein,

2013; Wiseman et al., 2015; Clark and Manning,

2016a). Our span-ranking approach is most

similar to mention ranking, but we reason over

a larger space by jointly detecting mentions and

predicting coreference.

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

3 Task

We formulate the task of end-to-end coreference

resolution as a set of decisions for every possible

span in the document. The input is a document D

containing T words along with metadata such as

speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=
N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y

′))

where s(i, j) is a pairwise score for a coreference

link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.
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t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

[Lee et al. (2017)]
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• Add ELMO: 67.2 => 70.4 (dev set)

MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Our model (ensemble) 81.2 73.6 77.2 72.3 61.7 66.6 65.2 60.2 62.6 68.8

Our model (single) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

Wiseman et al. (2015) 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4

Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0

Martschat and Strube (2015) 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

Durrett and Klein (2014) 72.6 69.9 71.2 61.2 56.4 58.7 56.2 54.2 55.2 61.7

Björkelund and Kuhn (2014) 74.3 67.5 70.7 62.7 55.0 58.6 59.4 52.3 55.6 61.6

Durrett and Klein (2013) 72.9 65.9 69.2 63.6 52.5 57.5 54.3 54.4 54.3 60.3

Table 1: Results on the test set on the English data from the CoNLL-2012 shared task. The final column

(Avg. F1) is the main evaluation metric, computed by averaging the F1 of MUC, B3, and CEAFφ4
. We

improve state-of-the-art performance by 1.5 F1 for the single model and by 3.1 F1.

Avg. F1 ∆

Our model (ensemble) 69.0 +1.3

Our model (single) 67.7

− distance and width features 63.9 -3.8

− GloVe embeddings 65.3 -2.4

− speaker and genre metadata 66.3 -1.4

− head-finding attention 66.4 -1.3

− character CNN 66.8 -0.9

− Turian embeddings 66.9 -0.8

Table 2: Comparisons of our single model on the

development data. The 5-model ensemble pro-

vides a 1.3 F1 improvement. The head-finding at-

tention, features, and all word representations con-

tribute significantly to the full model.

consists of more than 9% of the labeled mentions

in the training data. In contrast, we only dis-

card mentions that exceed our maximum mention

width of 10, which accounts for less than 2% of the

training mentions. The contribution of joint men-

tion scoring is further discussed in Section 8.3

8.2 Ablations

To show the importance of each component in our

proposed model, we ablate various parts of the ar-

chitecture and report the average F1 on the devel-

opment set of the data (see Figure 2).

Features The distance between spans and the

width of spans are crucial signals for coreference

resolution, consistent with previous findings from

other coreference models. They contribute 3.8 F1

to the final result.

Word representations Since our word embed-

dings are fixed, having access to a variety of word

embeddings allows for a more expressive model

without overfitting. We hypothesis that the differ-

ent learning objectives of the GloVe and Turian

embeddings provide orthogonal information (the

former is word-order insensitive while the latter

is word-order sensitive). Both embeddings con-

tribute to some improvement in development F1.

The character CNN provides morphological

information and a way to backoff for out-of-

vocabulary words. Since coreference decisions of-

ten involve rare named entities, we see a contribu-

tion of 0.9 F1 from character-level modeling.

Metadata Speaker and genre indicators many

not be available in downstream applications. We

show that performance degrades by 1.4 F1 without

them, but is still on par with previous state-of-the-

art systems that assume access to this metadata.

Head-finding attention Ablations also show a

1.3 F1 degradation in performance without the at-

tention mechanism for finding task-specific heads.

As we will see in Section 9.4, the attention mech-

anism should not be viewed as simply an approx-

imation of syntactic heads. In many cases, it is

beneficial to pay attention to multiple words that

are useful specifically for coreference but are not

traditionally considered to be syntactic heads.

[Lee et al. (2017)]
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MUC B3 CEAFφ4
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− GloVe embeddings 65.3 -2.4

− speaker and genre metadata 66.3 -1.4

− head-finding attention 66.4 -1.3

− character CNN 66.8 -0.9

− Turian embeddings 66.9 -0.8

Table 2: Comparisons of our single model on the

development data. The 5-model ensemble pro-

vides a 1.3 F1 improvement. The head-finding at-

tention, features, and all word representations con-

tribute significantly to the full model.

consists of more than 9% of the labeled mentions

in the training data. In contrast, we only dis-

card mentions that exceed our maximum mention

width of 10, which accounts for less than 2% of the

training mentions. The contribution of joint men-

tion scoring is further discussed in Section 8.3

8.2 Ablations

To show the importance of each component in our

proposed model, we ablate various parts of the ar-

chitecture and report the average F1 on the devel-

opment set of the data (see Figure 2).

Features The distance between spans and the

width of spans are crucial signals for coreference

resolution, consistent with previous findings from

other coreference models. They contribute 3.8 F1

to the final result.

Word representations Since our word embed-

dings are fixed, having access to a variety of word

embeddings allows for a more expressive model

without overfitting. We hypothesis that the differ-

ent learning objectives of the GloVe and Turian

embeddings provide orthogonal information (the

former is word-order insensitive while the latter

is word-order sensitive). Both embeddings con-

tribute to some improvement in development F1.

The character CNN provides morphological

information and a way to backoff for out-of-

vocabulary words. Since coreference decisions of-

ten involve rare named entities, we see a contribu-

tion of 0.9 F1 from character-level modeling.

Metadata Speaker and genre indicators many

not be available in downstream applications. We

show that performance degrades by 1.4 F1 without

them, but is still on par with previous state-of-the-

art systems that assume access to this metadata.

Head-finding attention Ablations also show a

1.3 F1 degradation in performance without the at-

tention mechanism for finding task-specific heads.

As we will see in Section 9.4, the attention mech-

anism should not be viewed as simply an approx-

imation of syntactic heads. In many cases, it is

beneficial to pay attention to multiple words that

are useful specifically for coreference but are not

traditionally considered to be syntactic heads.

[Lee et al. (2017)]
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• LitBank book coreference annotations


• Selections from 100 books, avg 2000 tokens long


• Command-line annotation software (!)


• Bamman et al. 2020
32

49

nor characters. Figure 2 in contrast examines the same
phenomenon from the perspective of individual mentions,
where each entity is weighted by the number of mentions
associated with it. As can be seen, while most entity types

span relatively short distances, most entity tokens are part
of coreference chains that span the entire document (ca.
2,000 words). Major characters, in particular, constitute the
majority of coreferential mentions.
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Figure 2: Spread between first and last mention of entity, in
tokens, weighted by the number of mentions in each entity.

5.2. Burstiness
To explore whether entities that span long text ranges tend
to cluster together in tight bursts, we quantify the burstiness
of an entity by measuring the entropy of the empirical dis-
tribution defined over mentions in narrative time: we divide
the narrative time of a book into 100 equal-sized segments
(each spanning roughly 200 words), and define de,i to be
the relative frequency with which entity e was mentioned in
segment i (relative to the total number of mentions of e in
the document). We calculate entropy as H(de).
Figure 3 illustrates this bursty behavior visually by select-
ing the entities with the lowest entropy (Basil Hallward in
The Picture of Dorian Gray) and highest entropy (the nar-
rator in Gulliver’s Travels) among those spanning at least
1500 tokens and mentioned at least 100 times. While Basil
Hallward goes through several periods of not being men-
tioned followed by increased focus (bursty behavior), even
the narrator of Gulliver’s Travels exhibits bursty behavior
despite being more uniformly mentioned, with a gap of sev-
eral hundred words in which he is not mentioned between
his otherwise constant focus. Even entities that have high
entropy (which should be closer to a uniform distribution of
mentions over time) still exhibit bursty behavior in which
there is a period of time where they are not mentioned.

5.3. Distance to nearest antecedent
Finally, we examine the distribution in distances to the
closest antecedent for proper nouns, common nouns and
pronouns for non-singleton mentions, as depicted in figure
4. Proper nouns have a median distance of 5 entities to
their nearest antecedent, with 90% of antecedents appear-
ing within 42 mentions, and 95% of antecedents within 78.3
mentions. Common nouns (3572 mentions) have a median
distance of 6 entities to their nearest antecedent, with 90%
of antecedents appearing within 59 mentions, and 95% of
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Figure 3: Long-range entities are bursty; the distribution
of mentions over narrative time for the entity with the low-
est entropy (top; Basil Hallward in Wilde’s The Picture of

Dorian Gray) and highest entropy (bottom; the narrator in
Swift’s Gulliver’s Travels).

antecedents within 101 mentions. Pronouns have a median
distance of 2 entities to their nearest antecedent, with 90%
of antecedents appearing within 5 mentions, and 95% of
antecedents within 9 mentions. While coreference systems
often impose strict limits to the number of maximum an-
tecedents to consider for long documents (Lee et al., 2017),
or use coarse-to-fine inference for reducing the number of
candidates (Lee et al., 2018), this suggests that pronouns
(which again account for over half of all potentially coref-
erential mentions in this data) only need to consider a far
shorter number of antecedents.
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Figure 4: Distance to antecedent in entities.
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• Two step pipeline


• 1. Mention detection (span classification)


• 2. Mention pair coreference prediction with Lee-style 
BERT model
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dataset is the mismatch between annotation guidelines—
especially the di�erence between the choice by PreCo and
LitBank to annotate singleton mentions and OntoNotes not
to. To assess this possibility, we can leverage the B3 coref-
erence metric to interrogate performance on a subset of the
data. Precision (P) and recall (R) in B

3 is calculated by
finding the overlap between a gold coreference chain Gi and
system coreference chain Si associated with each mention i

over all N mentions:

P =
1

N

NX

i=1

|Gi \ Si|
|Si|

R =
1

N

NX

i=1

|Gi \ Si|
|Gi|

We can adapt this to examine non-singleton performance by
ranging only over mentions that are not singletons in the gold
data; if we exclude true singleton mentions from our eval-
uation, the performance for all three training sources drops
(since singletons are comparatively easier to identify)—
with gold mention boundaries, PreCo B

3 drops from 73.8
to 69.7, OntoNotesB3 drops from 66.9 to 63.3, and LitBank
B

3 drops from 72.6 to 67.7. OntoNotes drops less than the
other methods—attesting to some impact of the singleton
annotation di�erence—but still lags behind the other two
sources of data on this metric.

6.2. Predicted mentions
To test real-world performance when not given access to
gold mention boundaries, we build a mention identifier
trained on the mention boundaries in our annotated literary
data, and assess coreference resolution performance when
using these predicted mentions at test time.

6.2.1. Mention identification
We train a mention identification system with a layered
BiLSTM-CRF of Ju et al. (2018) used in Bamman et al.
(2019); we adapt it here by replacing the static word embed-
dings in the original work with BERT contextual embed-
dings. In a tenfold cross-validation on our annotated data to
predict the mention spans, we find an F-score for mention
detection to be 89.1. Adding a prediction for whether an
entity is a proper noun phrase, common noun phrase or pro-
noun only decreases the F-score to 88.3; adding a prediction
for the entity class (person, organization, location, facility,
geo-political entity, or vehicle) yields a performance of 87.3.

Task Precision Recall F
Mention span detection 90.7 87.6 89.1

+ PROP/NOM/PRON 90.2 86.5 88.3
+ Entity class 89.2 85.5 87.3

Table 4: Mention identification performance.

6.2.2. Coreference resolution performance
To assess performance on predicted mentions, we carry
out another ten-fold cross-validation: for one partition of
the data into 80% training data, 10% development data,
and 10% test data, we use a mention identification model
trained on the training split to predict mention boundaries
in the test split, and then train our neural coreference system
on that same train split to make coreference decisions on
the predicted mentions in the test split (again using the

development set to assess early stopping). Table 5 presents
the results of this evaluation. While performance naturally
degrades as a function of the predicted mentions, we see the
same overall rank between training sources as found in table
3: LitBank (68.1F) and PreCo (67.6F) are indistinguishable
but both perform substantially better than OntoNotes.

Training source B
3 MUC CEAF�4 Average

OntoNotes 57.7 81.2 49.7 62.9
PreCo 63.5 84.2 55.1 67.6

LitBank 62.7 84.3 57.3 68.1

Table 5: Coreference resolution performance on predicted
mentions.

7. Conclusion
We present in this work a new dataset of coreference anno-
tations for 210,532 tokens drawn from 100 di�erent literary
texts, to allow the analysis of coreference performance in
a wide range of literary styles and authors, and to train
coreference resolution systems on literary data in English.
As more and more work in literary analysis makes use of
computational methods to explore the persistence of entities
in text—from characters (Piper, 2018; Underwood, 2019)
to objects (Tenen, 2018)—having reliable estimates of the
quality of di�erent coreference methods is critical for as-
sessing their impact on downstream measurements.
In addition to the core contribution of this dataset and eval-
uation, there are three takeaways worth highlighting: the
first is the relatively high performance of PreCo in cross-
domain coreference resolution. While PreCo comes from a
separate domain of school examinations, it is able to match
the performance of a smaller dataset of in-domain corefer-
ence annotations; while the literary annotations are able to
achieve comparable performance with two orders of magni-
tude less data, PreCo illustrates the power of large annotated
datasets to work well across a potential variety of domains.
Second, we illustrate the behavior of entities across long
spans of text—demonstrating that entities tend to be bi-
modal (either active over very short timespans or very long
ones), and frequent entities tend to exhibit bursty behav-
ior over the course of long documents. Third, we illus-
trate the di�ering antecedent behavior of di�erent mention
types, showing that pronouns in particular can be linked to
an antecedent within nine mentions 95% of the time. We
hope this work can spur future work on literary coreference,
since the characteristics of literature—the relatively long
length of documents, the centrality of relatively few ma-
jor entities, the di�cult metaphysical and epistemological
questions of identity and the revelation of knowledge—can
potentially provide a unique vantage point on the prob-
lem of coreference in general. This data is freely avail-
able at https://github.com/dbamman/litbank;
code to support this work can be found at https://
github.com/dbamman/lrec2020-coref.
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out another ten-fold cross-validation: for one partition of
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and 10% test data, we use a mention identification model
trained on the training split to predict mention boundaries
in the test split, and then train our neural coreference system
on that same train split to make coreference decisions on
the predicted mentions in the test split (again using the

development set to assess early stopping). Table 5 presents
the results of this evaluation. While performance naturally
degrades as a function of the predicted mentions, we see the
same overall rank between training sources as found in table
3: LitBank (68.1F) and PreCo (67.6F) are indistinguishable
but both perform substantially better than OntoNotes.

Training source B
3 MUC CEAF�4 Average

OntoNotes 57.7 81.2 49.7 62.9
PreCo 63.5 84.2 55.1 67.6

LitBank 62.7 84.3 57.3 68.1

Table 5: Coreference resolution performance on predicted
mentions.

7. Conclusion
We present in this work a new dataset of coreference anno-
tations for 210,532 tokens drawn from 100 di�erent literary
texts, to allow the analysis of coreference performance in
a wide range of literary styles and authors, and to train
coreference resolution systems on literary data in English.
As more and more work in literary analysis makes use of
computational methods to explore the persistence of entities
in text—from characters (Piper, 2018; Underwood, 2019)
to objects (Tenen, 2018)—having reliable estimates of the
quality of di�erent coreference methods is critical for as-
sessing their impact on downstream measurements.
In addition to the core contribution of this dataset and eval-
uation, there are three takeaways worth highlighting: the
first is the relatively high performance of PreCo in cross-
domain coreference resolution. While PreCo comes from a
separate domain of school examinations, it is able to match
the performance of a smaller dataset of in-domain corefer-
ence annotations; while the literary annotations are able to
achieve comparable performance with two orders of magni-
tude less data, PreCo illustrates the power of large annotated
datasets to work well across a potential variety of domains.
Second, we illustrate the behavior of entities across long
spans of text—demonstrating that entities tend to be bi-
modal (either active over very short timespans or very long
ones), and frequent entities tend to exhibit bursty behav-
ior over the course of long documents. Third, we illus-
trate the di�ering antecedent behavior of di�erent mention
types, showing that pronouns in particular can be linked to
an antecedent within nine mentions 95% of the time. We
hope this work can spur future work on literary coreference,
since the characteristics of literature—the relatively long
length of documents, the centrality of relatively few ma-
jor entities, the di�cult metaphysical and epistemological
questions of identity and the revelation of knowledge—can
potentially provide a unique vantage point on the prob-
lem of coreference in general. This data is freely avail-
able at https://github.com/dbamman/litbank;
code to support this work can be found at https://
github.com/dbamman/lrec2020-coref.
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