
Constituent Syntax (II)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing

http://brenocon.com/cs685

https://people.cs.umass.edu/~brenocon/cs685_s21/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

• Syntax: how do words structurally combine to form
sentences and meaning?

• Representations

• Constituents

• [the big dogs] chase cats

• [colorless green clouds] chase cats

• Dependencies

• The dog ← chased the cat.

• My dog, a big old one, chased the cat.

• Idea of a grammar (G): global template for how
sentences / utterances / phrases w are formed, via latent
syntactic structure y

• Linguistics: what do G and P(w,y | G) look like?

• Generation: score with, or sample from, P(w, y | G)

• Parsing: predict P(y | w, G)

2

I
A

• Explicit grammars: How to parse, give one?

• Learning a grammar

• Do RNN/Transformers implicitly learn
constituency syntax?

3

IT 2

e
RNN Grammar

Parsing with a CFG

• Task: given text and a CFG, answer:

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Ambiguity is key problem: there exist multiple
possible analyses

• Cocke-Kasami-Younger algorithm

• Bottom-up dynamic programming:
Find possible nonterminals for short spans of
sentence, then possible combinations for higher spans

• Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization): always one or two RHS terms

4

to neatgrummotral R

Tcfa
a

SA B

CKY big idea
• Each nonterminal X is associated with its span (i:j)

• To merge Y, Z into X via rule X -> Y Z:

• we can create Xi:j only from neighboring children at Yi:k and Zk:j

• and we don't care about Y's or Z's internal substructure (Markov property!)
thus, we get a dynamic programming speedup!

5

T p

Od

x i
a

6

NP NP

A
t mil

Gums Gosei siD duh Iida
c

Dy

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

1:2

1:3

Adj NP NP

yummy foods store0 1 2

CKY
For cell [i:j] (loop through them bottom-up)
 For possible splitpoint k=i..j:
 For every B in [i:k] and C in [k:j],
 If exists rule A -> B C,
 add A to cell [i,j] (Recognizer)
or... add (A,B,C, k) to cell [i,j] (Parser)

3

D

p
iPad

a

C C 7

8

k I

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)

and C(2,2).

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Another way.

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

XIX

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]Ek k 3

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

O(G n^3)

G = grammar
constant

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Probabilistic CFGs

16

• Defines a probabilistic generative p(y,w)

• Can parameterize local production probs. Must maintain Markov
property for efficient inference.

• Learning

• Fully supervised: if you have a treebank (Penn TB, Chinese TB)

• Unsupervised: EM or other latent-variable learning methods

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

[J&M textbook]

57

en

ang

17

((S
 (NP-SBJ (NNP General) (NNP Electric) (NNP Co.))
 (VP (VBD said)
 (SBAR (-NONE- 0)
 (S
 (NP-SBJ (PRP it))
 (VP (VBD signed)
 (NP
 (NP (DT a) (NN contract))
 (PP (-NONE- *ICH*-3)))
 (PP (IN with)
 (NP
 (NP (DT the) (NNS developers))
 (PP (IN of)
 (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))
 (PP-3 (IN for)
 (NP
 (NP (DT the) (JJ second) (NN phase))
 (PP (IN of)
 (NP
 (NP (DT an) (JJ independent)
 (ADJP
 (QP ($ $) (CD 400) (CD million))
 (-NONE- *U*))
 (NN power) (NN plant))
 (, ,)
 (SBAR
 (WHNP-2 (WDT which))
 (S
 (NP-SBJ-1 (-NONE- *T*-2))
 (VP (VBZ is)
 (VP (VBG being)
 (VP (VBN built)
 (NP (-NONE- *-1))
 (PP-LOC (IN in)
 (NP
 (NP (NNP Burrillville))
 (, ,)
 (NP (NNP R.I)))))))))))))))))

Penn
Treebank

In

go to

(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Probabilistic/Weighted CKY: given PCFG and sentence w

• Likelihood of sentence P(w)

• Most probable parse (“Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)

• Non-terminal span marginals (Inside-outside algorithm)

• Discriminative (Tree-CRF) parsing:
argmaxy P(y | w)

18

E
Te

Ltd

by

• Parsing model accuracy: lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

• Need to add word embeddings or other lexical information
to enrich phrase representations

• Parsers’ computational efficiency

• Grammar constant; pruning & heuristic search

• O(N3) for CKY (ok? sometimes...)

• O(N) left-to-right incremental algorithms

• Evaluate: precision and recall of labeled spans

• Treebank data

19

e

• Lexicalization: encode semantic preferences

20

208 CHAPTER 11. CFG PARSING

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N* EX $ CD QP PRP . . .
PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine)

NP(Italy)

NNS

Italy

CC

and

NP(wine)

PP(from)

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

NP(wine)

PP(from)

NP(France)

NP(Italy)

NNS

Italy

CC

and

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

VP(meet)

PP(on)

NP

NN

Monday

P

on

NP(President)

NN

President

DT

the

VB

meet

VP(meet)

NP(President)

PP(of)

NP

NN

Mexico

P

of

NP(President)

NN

President

DT

the

VB

meet

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

walk, since can is tagged MD), noun phrases are headed by the rightmost noun-like non-
terminal (so the head of the red cat is cat), and prepositional phrases are headed by the
preposition (the head of at Georgia Tech is at). Some of these rules are somewhat arbitrary
— there’s no particular reason why the head of cats and dogs should be dogs — but the
point here is just to get some lexical information that can support parsing, not to make
any deep claims about syntax.

Given these rules, we can lexicalize the parse trees for some of our examples, as shown
in Figure 11.9.

• In the upper part of Figure 11.9, we see how lexicalization can help solve coordina-
tion scope ambiguity; if,

P (NP ! NP(France) CC NP(Italy)) > P (NP ! NP(wine) CC NP(Italy)), (11.15)

we should get the right parse.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]

T

Reranking

• CFGs are fast, but only use local info

• Whole-structure scoring (features, tree RNNs,
etc.) is slow, but can use global info

• Solution: Reranking
• CKY/Viterbi to infer top-K parses from fast CFG

model

• Score each one with NN/features
for K-way multiclass problem

• or use a ranking loss, etc.

• Reranking (fast->slow) is a very general
approach in NLP & other areas (IR, etc.)

21

8

how do we learn phrase vectors?

 24

How	should	we	map	phrases	into	a	vector	space?	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

2.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

Use	principle	of	composi%onality	
The	meaning	(vector)	of	a	sentence	
is		determined	by		
(1) the	meanings	of	its	words	and	
(2) the	rules	that	combine	them.	

Models	in	this	sec%on	
can	jointly	learn	parse	
trees	and	composi%onal	
vector	representa%ons	

x2	

x1				0								1						2							3						4						5						6						7							8						9					10	

5	

4	

3	

2	

1	

		the	country	of	my	birth	

		the	place	where	I	was	born	

Monday	

Tuesday	

France	
Germany	

12	

Reranking: TreeRNN

22

10.6. BEYOND CONTEXT-FREE PARSING 251

rule (Socher et al., 2013), e.g.,

ui,j = f

✓
⇥X!Y Z

ui,k

uk,j

�◆
[10.44]

The overall score of the parse can then be computed from the final vector, (⌧) =
✓u0,M .

Reranking can yield substantial improvements in accuracy. The main limitation is that it
can only find the best parse among the K-best offered by the generator, so it is inherently
limited by the ability of the bottom-up parser to find high-quality candidates.

10.6.2 Transition-based parsing

Structure prediction can be viewed as a form of search. An alternative to bottom-up pars-
ing is to read the input from left-to-right, gradually building up a parse structure through
a series of transitions. Transition-based parsing is described in more detail in the next
chapter, in the context of dependency parsing. However, it can also be applied to CFG
parsing, as briefly described here.

For any context-free grammar, there is an equivalent pushdown automaton, a model
of computation that accepts exactly those strings that can be derived from the grammar.
This computational model consumes the input from left to right, while pushing and pop-
ping elements on a stack. This architecture provides a natural transition-based parsing
framework for context-free grammars, known as shift-reduce parsing.

Shift-reduce parsing is a type of transition-based parsing, in which the parser can take
the following actions:

• shift the next terminal symbol onto the stack;

• unary-reduce the top item on the stack, using a unary production rule in the gram-
mar;

• binary-reduce the top two items onto the stack, using a binary production rule in the
grammar.

The set of available actions is constrained by the situation: the parser can only shift if
there are remaining terminal symbols in the input, and it can only reduce if an applicable
production rule exists in the grammar. If the parser arrives at a state where the input
has been completely consumed, and the stack contains only the element S, then the input
is accepted. If the parser arrives at a non-accepting state where there are no possible
actions, the input is rejected. A parse error occurs if there is some action sequence that
would accept an input, but the parser does not find it.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

[Socher et al. (2013)]

(Can also be used for classification or other tasks, not just parsing itself)

Model performance

23

220 CHAPTER 11. CFG PARSING

Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%

Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%

State splitting (Petrov and Klein, 2007) 90.1%

CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%

Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

alternative not described in detail here is the self-training parser of McClosky et al. (2006),
which automatically labels additional training instances, and then uses them for learning.
Self-training is often considered to be a risky technique in machine learning, since the
automatically-labeled instances can cause the classifier to “drift” away from the correct
model (Blum and Mitchell, 1998).

Recent work has applied neural representations to parsing, representing units of text
with dense numerical vectors (Socher et al., 2013a; Durrett and Klein, 2015). Neural ap-
proahes to natural language processing will be surveyed in chapter 21. For now, we note
that while performance for these models is at or near the state-of-the-art, neural net ar-
chitectures have not demonstrated the same dramatic improvements in natural language
parsing as in other problem domains, such as computer vision (e.g., Krizhevsky et al.,
2012).

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]

O P
t

o

ERG

24

25

Left-to-right models

• Case study:
Subject-Verb agreement on grammatical number

26

(2) The keys to the cabinet are on the table.

Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).

The keys to the cabinet are on the table

det

nsubj

prep det
pobj

prep det
pobj

root

Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add

nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-

523

indentation in a programming language (Karpathy et
al., 2016). The goal of the present work is to probe
their ability to learn natural language hierarchical
(syntactic) structures from a corpus without syntactic
annotations. As a first step, we focus on a particular
dependency that is commonly regarded as evidence
for hierarchical structure in human language: English
subject-verb agreement, the phenomenon in which
the form of a verb depends on whether the subject
is singular or plural (the kids play but the kid plays;
see additional details in Section 2). If an RNN-based
model succeeded in learning this dependency, that
would indicate that it can learn to approximate or
even faithfully implement syntactic structure.

Our main interest is in whether LSTMs have the
capacity to learn structural dependencies from a nat-
ural corpus. We therefore begin by addressing this
question under the most favorable conditions: train-
ing with explicit supervision. In the setting with the
strongest supervision, which we refer to as the num-
ber prediction task, we train it directly on the task of
guessing the number of a verb based on the words that
preceded it (Sections 3 and 4). We further experiment
with a grammaticality judgment training objective, in
which we provide the model with full sentences an-
notated as to whether or not they violate subject-verb
number agreement, without an indication of the locus
of the violation (Section 5). Finally, we trained the
model without any grammatical supervision, using
a language modeling objective (predicting the next
word).

Our quantitative results (Section 4) and qualitative
analysis (Section 7) indicate that most naturally oc-
curring agreement cases in the Wikipedia corpus are
easy: they can be resolved without syntactic informa-
tion, based only on the sequence of nouns preceding
the verb. This leads to high overall accuracy in all
models. Most of our experiments focus on the super-
vised number prediction model. The accuracy of this
model was lower on harder cases, which require the
model to encode or approximate structural informa-
tion; nevertheless, it succeeded in recovering the ma-
jority of agreement cases even when four nouns of the
opposite number intervened between the subject and
the verb (17% errors). Baseline models failed spec-
tacularly on these hard cases, performing far below
chance levels. Fine-grained analysis revealed that
mistakes are much more common when no overt cues

to syntactic structure (in particular function words)
are available, as is the case in noun-noun compounds
and reduced relative clauses. This indicates that the
number prediction model indeed managed to capture
a decent amount of syntactic knowledge, but was
overly reliant on function words.

Error rates increased only mildly when we
switched to more indirect supervision consisting only
of sentence-level grammaticality annotations without
an indication of the crucial verb. By contrast, the
language model trained without explicit grammati-
cal supervision performed worse than chance on the
harder agreement prediction cases. Even a state-of-
the-art large-scale language model (Jozefowicz et
al., 2016) was highly sensitive to recent but struc-
turally irrelevant nouns, making more than five times
as many mistakes as the number prediction model on
these harder cases. These results suggest that explicit
supervision is necessary for learning the agreement
dependency using this architecture, limiting its plau-
sibility as a model of child language acquisition (El-
man, 1990). From a more applied perspective, this
result suggests that for tasks in which it is desirable to
capture syntactic dependencies (e.g., machine trans-
lation or language generation), language modeling
objectives should be supplemented by supervision
signals that directly capture the desired behavior.

2 Background: Subject-Verb Agreement

as Evidence for Syntactic Structure

The form of an English third-person present tense
verb depends on whether the head of the syntactic
subject is plural or singular:2

(1) a. The key is on the table.
b. *The key are on the table.
c. *The keys is on the table.
d. The keys are on the table.

While in these examples the subject’s head is adjacent
to the verb, in general the two can be separated by
some sentential material:3

2 Identifying the head of the subject is typically straightfor-
ward. In what follows we will use the shorthand “the subject” to
refer to the head of the subject.

3In the examples, the subject and the corresponding verb
are marked in boldface, agreement attractors are underlined and
intervening nouns of the same number as the subject are marked
in italics. Asterisks mark unacceptable sentences.

522

(2) The keys to the cabinet are on the table.

Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).

The keys to the cabinet are on the table

det

nsubj

prep det
pobj

prep det
pobj

root

Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add

nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-

523

• N-grams can’t capture long-distance
dependencies

[Linzen et al. 2016]

• Can sequence models learn hierarchical
syntactic phenomena?

e
g

c

t

Left-to-right sequence RNN
• Does an LSTM LM implicitly learn these syntactic rules?

• Assess number prediction by comparing e.g.
P(writes | ...) vs. P(write | ...)

27

(a)

529

(b)

529

Training objective Sample input Training signal Prediction task Correct answer

Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL
Verb inflection The keys to the cabinet [is/are] PLURAL SINGULAR/PLURAL? PLURAL
Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL
Language model The keys to the cabinet are P (are) > P (is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

only people is a plausible subject for eat; the network
can use this information to infer that the correct form
of the verb is eat is rather than eats.

This objective is similar to the task that humans
face during language production: after the speaker
has decided to use a particular verb (e.g., write), he
or she needs to decide whether its form will be write
or writes (Levelt et al., 1999; Staub, 2009).

Grammaticality judgments: The previous objec-
tives explicitly indicate the location in the sentence in
which a verb can appear, giving the network a cue to
syntactic clause boundaries. They also explicitly di-
rect the network’s attention to the number of the verb.
As a form of weaker supervision, we experimented
with a grammaticality judgment objective. In this sce-
nario, the network is given a complete sentence, and
is asked to judge whether or not it is grammatical.

To train the network, we made half of the examples
in our training corpus ungrammatical by flipping the
number of the verb.10 The network read the entire
sentence and received a supervision signal at the end.
This task is modeled after a common human data col-
lection technique in linguistics (Schütze, 1996), al-
though our training regime is of course very different
to the training that humans are exposed to: humans
rarely receive ungrammatical sentences labeled as
such (Bowerman, 1988).

Language modeling (LM): Finally, we experi-
mented with a word prediction objective, in which
the model did not receive any grammatically relevant
supervision (Elman, 1990; Elman, 1991). In this sce-
nario, the goal of the network is to predict the next
word at each point in every sentence. It receives un-
labeled sentences and is not specifically instructed to

10In some sentences this will not in fact result in an ungram-
matical sentence, e.g. with collective nouns such as group, which
are compatible with both singular and plural verbs in some di-
alects of English (Huddleston and Pullum, 2002); those cases
appear to be rare.

attend to the number of the verb. In the network that
implements this training scenario, RNN activation
after each word is fed into a fully connected dense
layer followed by a softmax layer over the entire
vocabulary.

We evaluate the knowledge that the network has
acquired about subject-verb noun agreement using
a task similar to the verb inflection task. To per-
form the task, we compare the probabilities that the
model assigns to the two forms of the verb that in
fact occurred in the corpus (e.g., write and writes),
and select the form with the higher probability.11 As
this task is not part of the network’s training objec-
tive, and the model needs to allocate considerable
resources to predicting each word in the sentence, we
expect the LM to perform worse than the explicitly
supervised objectives.

Results: When considering all agreement depen-
dencies, all models achieved error rates below 7%
(Figure 4a); as mentioned above, even the noun-only
number prediction baselines achieved error rates be-
low 5% on this task. At the same time, there were
large differences in accuracy across training objec-
tives. The verb inflection network performed slightly
but significantly better than the number prediction
one (0.8% compared to 0.83% errors), suggesting
that the semantic information carried by the verb is
moderately helpful. The grammaticality judgment
objective performed somewhat worse, at 2.5% errors,
but still outperformed the noun-only baselines by a
large margin, showing the capacity of the LSTM ar-
chitecture to learn syntactic dependencies even given
fairly indirect evidence.

The worst performer was the language model. It

11One could also imagine performing the equivalent of the
number prediction task by aggregating LM probability mass over
all plural verbs and all singular verbs. This approach may be
more severely affected by part-of-speech ambiguous words than
the one we adopted; we leave the exploration of this approach to
future work.

If

TO

sew

Left-to-right grammatical RNN

• Shift-reduce parsing

• One form of left-to-right / top-down parsing

• Incrementally build up the parse tree, scanning words left-to-right.

• Parser as a state machine

• No dynamic programming! O(n) runtime (typically)

• Potentially related to cognitive processing?

• Most practically efficient for constituent parsing -- e.g. zpar and CoreNLP
implementations

• "RNN Grammars": LSTM-based stack automaton (not merely a
traditional sequence RNN)

D

D

ee
0

0

Shift-reduce parsing
• State machine: stack and input buffer

• Decide on one of 3 actions

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1
S x | B n SHIFT S | x B n

S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1
S T n GEN(x) S | x T | x n

S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action

0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1
S x | B n SHIFT S | x B n

S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1
S T n GEN(x) S | x T | x n

S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action

0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

[Dyer et al. 2016]

0
I c.se
pp gets

T I

I

e

Generation as well

30

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1
S x | B n SHIFT S | x B n

S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1
S T n GEN(x) S | x T | x n

S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action

0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence. [Dyer et al. 2016]

O

E e

• Models for shift-reduce

• Any (P)CFG can be parsed in this manner [Stolcke 1995]

• History based models: select next action given information
about current state and history

• Infinite history, no future (contrast to PCFG assumptions!)

• a: action

• u: features/embedding of current state

• Generative form (discriminative also possible):

31

Shift-reduce parsing

suming the availability of constant time push and
pop operations, the runtime is linear in the number
of the nodes in the parse tree that is generated by
the parser/generator (intuitively, this is true since al-
though an individual REDUCE operation may require
applying a number of pops that is linear in the num-
ber of input symbols, the total number of pop opera-
tions across an entire parse/generation run will also
be linear). Since there is no way to bound the num-
ber of output nodes in a parse tree as a function of
the number of input words, stating the runtime com-
plexity of the parsing algorithm as a function of the
input size requires further assumptions. Assuming
our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models

Our generation algorithm algorithm differs from
previous stack-based parsing/generation algorithms
in two ways. First, it constructs rooted tree struc-
tures top down (rather than bottom up), and sec-
ond, the transition operators are capable of directly
generating arbitrary tree structures rather than, e.g.,
assuming binarized trees, as is the case in much
prior work that has used transition-based algorithms
to produce phrase-structure trees (Sagae and Lavie,
2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-
sented to define a joint distribution on syntax trees
(y) and words (x). This distribution is defined as a
sequence model over generator transitions that is pa-
rameterized using a continuous space embedding of
the algorithm state at each time step (ut); i.e.,

p(x, y) =

|a(x,y)|Y

t=1

p(at | a<t)

=

|a(x,y)|Y

t=1

exp r>atut + batP
a02AG(Tt,St,nt) exp r>a0ut + ba0

,

and where action-specific embeddings ra and bias
vector b are parameters in ⇥.

The representation of the algorithm state at time
t, ut, is computed by combining the representation
of the generator’s three data structures: the output
buffer (Tt), represented by an embedding ot, the
stack (St), represented by an embedding st, and the

history of actions (a<t) taken by the generator, rep-
resented by an embedding ht,

ut = tanh (W[ot; st;ht] + c) ,

where W and c are parameters. Refer to Figure 5
for an illustration of the architecture.

The output buffer, stack, and history are se-
quences that grow unboundedly, and to obtain rep-
resentations of them we use recurrent neural net-
works to “encode” their contents (Cho et al., 2014).
Since the output buffer and history of actions are
only appended to and only contain symbols from a
finite alphabet, it is straightforward to apply a stan-
dard RNN encoding architecture. The stack (S) is
more complicated for two reasons. First, the ele-
ments of the stack are more complicated objects than
symbols from a discrete alphabet: open nontermi-
nals, terminals, and full trees, are all present on the
stack. Second, it is manipulated using both push and
pop operations. To efficiently obtain representations
of S under push and pop operations, we use stack
LSTMs (Dyer et al., 2015). To represent complex
parse trees, we define a new syntactic composition
function that recursively defines representations of
trees.

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser
pops a sequence of completed subtrees and/or to-
kens (together with their vector embeddings) from
the stack and makes them children of the most recent
open nonterminal on the stack, “completing” the
constituent. To compute an embedding of this new
subtree, we use a composition function based on
bidirectional LSTMs, which is illustrated in Fig. 6.

NP

u v w

NP u v w NP

x
x

Figure 6: Syntactic composition function based on bidirec-
tional LSTMs that is executed during a REDUCE operation; the
network on the right models the structure on the left.

[Dyer et al. 2016]

DO

Its
unit state

The hungry cat

NP (VP(S
RE

DU
CE

GE
N

NT
(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Tt� �� �St� �� �

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and
history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the
stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

The first vector read by the LSTM in both the for-
ward and reverse directions is an embedding of the
label on the constituent being constructed (in the fig-
ure, NP). This is followed by the embeddings of the
child subtrees (or tokens) in forward or reverse or-
der. Intuitively, this order serves to “notify” each
LSTM what sort of head it should be looking for as it
processes the child node embeddings. The final state
of the forward and reverse LSTMs are concatenated,
passed through an affine transformation and a tanh
nonlinearity to become the subtree embedding.5 Be-
cause each of the child node embeddings (u, v, w in
Fig. 6) is computed similarly (if it corresponds to an
internal node), this composition function is a kind of
recursive neural network.

4.2 Word Generation

To reduce the size of AG(S, T, n), word genera-
tion is broken into two parts. First, the decision to
generate is made (by predicting GEN as an action),
and then choosing the word, conditional on the cur-
rent parser state. To further reduce the computa-
tional complexity of modeling the generation of a
word, we use a class-factored softmax (Baltescu and
Blunsom, 2015; Goodman, 2001). By using

p
|⌃|

classes for a vocabulary of size |⌃|, this prediction

5We found the many previously proposed syntactic compo-
sition functions inadequate for our purposes. First, we must
contend with an unbounded number of children, and many
previously proposed functions are limited to binary branching
nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those
that could deal with n-ary nodes made poor use of nonterminal
information (Tai et al., 2015), which is crucial for our task.

step runs in time O(
p

|⌃|) rather than the O(|⌃|) of
the full-vocabulary softmax. To obtain clusters, we
use the greedy agglomerative clustering algorithm
of Brown et al. (1992).

4.3 Training

The parameters in the model are learned to maxi-
mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by
replacing the embedding of Tt at each time step with
an embedding of the input buffer Bt. To train this
model, the conditional likelihood of each sequence
of actions given the input string is maximized.6

5 Inference via Importance Sampling

Our generative model p(x, y) defines a joint dis-
tribution on trees (y) and sequences of words (x).
To evaluate this as a language model, it is neces-
sary to compute the marginal probability p(x) =P

y02Y(x) p(x, y0). And, to evaluate the model as
a parser, we need to be able to find the MAP parse
tree, i.e., the tree y 2 Y(x) that maximizes p(x, y).
However, because of the unbounded dependencies
across the sequence of parsing actions in our model,
exactly solving either of these inference problems
is intractable. To obtain estimates of these, we use

6For the discriminative parser, the POS tags are processed
similarly as in (Dyer et al., 2015); they are predicted for English
with the Stanford Tagger (Toutanova et al., 2003) and Chinese
with Marmot (Mueller et al., 2013).

• Vector representation of current stack/buffer state

• Explicit log-linear features over the current stack, buffer etc.
[Ratnaparkhi 1998, Zhang+Clark 2011]

• Neural network representation of current state [e.g. Henderson 2004,
Dyer et al. 2016, Bowman et al. 2016]

• Training: extract oracle decisions paths from labeled data

• Generative model: use importance sampling to calculate feature
expectations

32 [Dyer et al. 2016]

Results: Look out for bugs.

33

Corrigendum to Recurrent Neural Network Grammars

Abstract

Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and

Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)† – buggy D 89.8
Generative, p̂(y | x)† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

Corrigendum to Recurrent Neural Network Grammars

Abstract

Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and

Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)† – buggy D 89.8
Generative, p̂(y | x)† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

• Even the experts have bugs!

• Many, MANY unreported
bugs in results are likely out
there

• Replication and
reimplementation are often
good ways of finding them

I

8

