Constituent Syntax (l1)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing
http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685 s21/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

® Syntax: how do words structurally combine to form
sentences and meaning?

® _Representations
e Constituents
® [the big dogs] chase cats
® [colorless green clouds] chase cats
® Dependencies
® The dog < chased the cat.
e My dog,a big old one, chased the cat.

\/

® Idea of a grammar (G): global template for how
sentences / utterances / phrases w are formed, via latent
syntactic structure y

® Linguistics: what do G and P(w,y | G) look like?
® Generation: score with, or sample from, P(w,y | G)
® Parsing: predict P(y | w, G)

2

® Explicit grammars: How to parse, give one!
® | earning a grammar

¢ Do RNN/Transformers implicitly learn
constituency syntax!?

Parsing with a CFG

® Task: given text and a CFG, answer:
® Does there exist at least one parse!?
® Enumerate parses (backpointers)

® Ambiguity is key problem: there exist multiple
possible analyses

® Cocke-Kasami-Younger algorithm

® Bottom-up dynamic programming:
Find possible nonterminals for short spans of
sentence, then possible combinations for higher spans

® Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization): always one or two RHS terms

° . O .r\ S
CKY big idea 0% < xm
® Each nonterminal X is associated with its span (i:j)
® To mergeY,Z into X via rule X ->Y Z: 6 e CwT

C—
® we can create X;; only fromTeighBoring children at Yy and Zy;
® and we don't care aboutY's or Z's internal substructure (Markov property!)

thus, we get a dynamic programming speedup! A ——

N
. T?J

Q\‘

\.——

S (& —
CKY Grammar
For cell [i] (loop through them bottom-up) f"A dj -> yummy
For possible splitpoint k=i..: NP > ¢
-> foods
[NP -> store

For every B in [i:k] and C in [k:j],
-> NP N N\
HP -> Adj NR|

If existSule A ->B &
add A to Tell [i,j] (Recognizer)

or.. \ add (A,B,C, k) to cell [i,j] (Parser)

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

Complexity !
How do we fill in C(1,2)? <>

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

How do we fill in C(1,2)? <> ComP|eXity ?
Put together C(1,1 <>
and C?2,2). ah <><><>
RS
QAT
6000000

1 2 3

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

How do we fill in C(1,3)? <> Complexity ?
S
ooy
eo0000

1 2 3 n

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

Complexity !

S ©<><><>
2
@%><> TN

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity ?

Onevay Qggggg
1So00e

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

How do we fill in C(1 n<),,> <%><> Complexity ?
RIS
00000

1 2 3 n

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity !

=
POPPPS

0069

3 n

[Example from Noah Smith]

[J&M textbook]

Probabilistic CFGs

S — NP VP 80] ||| Det — thar[.10] | a[30] | the [60])
S — Aux NP VP [.15] Noun — book [.10] | flight [.30]

S — VP [.05] | meal [.15] | money [.05]
NP — Pronoun [-35] | flights [.40] | dinner [.10]
NP — Proper-Noun [.30] Verb — book [.30] | include [.30]
NP — Det Nominal [.20] | prefer;[.40]

NP — Nominal [.15] Pronoun — 1[.40] | she [.05]
Nominal — Noun [.75] | me [.15] | you [.40]
Nominal — Nominal Noun [.20] Proper-Noun — Houston [.60]
Nominal — Nominal PP [.05] | TWA [.40]

VP — Verb [:35] Aux — does [.60] | can [40]

VP — Verb NP [.20] Preposition — from [.30] | to [.30]
VP — Verb NP PP [.10] | on [.20] | near [.15]

VP — Verb PP [.15] | through [.05]

VP — Verb NP NP 03]

VP — VP PP .15]

PP — Preposition NP [1.0]

® Defines a probabilistic generative p(y,w)

® Can parameterize local production probs. Must maintain Markov
property for efficient inference.

® Learning
® Fully supervised: if you have a treebank (Penn TB, Chinese TB)
® Unsupervised: EM or other latept-variable learning methods

((s
(NP-SBJ J(NNP General) (NNP Electric) (NNP Co.))
(P~ (VBD said)
(SBAR (-NONE- 0)
(S
(NP-SBJ (PRP it))
(VP (VBD signed)
(NP
(NP (DT a) (NN contract))
(PP (-NONE- *ICH*-3)))
(PP (IN with)
(NP
(NP (DT the) (NNS developers))
(PP (IN of)
(NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))
(PP-3 (IN for)

(NP
(NP (DT the) (JJ second) (NN phase))
F)€3r1r1 (PP (IN of)
(NP
Treebanl((NP (DT an) (JJ independent)
(ADJP

(QP ($ $) (CD 400) (CD million))
(-NONE- *U*))
(NN power) (NN plant))
(/)
(SBAR
(WHNP-2 (WDT which))
(S
(NP-SBJ-1 (-NONE- *T*-2))
(VP (VBZ is)
(VP (VBG being)
(VP (VBN built)
(NP (-NONE- *-1))
(PP-LOC (IN in)
(NP
(NP (NNP Burrillville))
()
(NP (NNP R.I)))))))))))))))))

(P)CFG model, (P)CKY algorithm

e CKY:given CFG and sentence w
@ Does there exist at least one parse?

Enumerate parses (backpointers)

® Probabilistic/Weighted CKY: given PCFG and sentence w
® Likelihood of sentence P(w)
® Most probable parse (“Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)
® Non-terminal span marginals (Inside-outside algorithm)

® Discriminative (Tree-CRF) parsing:
argmaxy P(y | w)

Parsing model accuracy: lots of ambiguity!!

® PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

® Need to add word embeddings or other lexical information
to enrich phrase representations

Parsers’ computational efficiency
® Grammar constant; pruning & heuristic search

o O(N3for CKY (ok? sometimes...)
® —O(N) left-to-right incremental algorithms

Evaluate: precision and recall of labeled spans
Treebank data

Better PCFG grammars

® | exicalization: encode semantic preferences

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP

VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N*EX$ CD QP PRP...

PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine) NP(wine)
NP (wine) CC NP(Italy) NP(wine) PP(from)
—_— | | | -
NP (wine) PP(from) and NNS NN IN NP (France)
| — | | | —
NN IN NP(France) Ttaly wine from NP(France) CC NP(Italy)
| | |
wine from NI‘\TP Nl‘\T P and Nl‘\T S
| | |
France France Italy
VP (meet) VP (meet)
- —
VB NP(President) PP(on) VB NP (President)
\ — — \
meet DT NN P NP meet NP(President) PP(of)
[[| [— —
the President on NN DT NN P NP
[[[[[
Monday the President of NN

|
Mexico

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

20 [From Eisenstein (2017)]

Reranking

® CFGs are fast, but only use local info

® Whole-structure scoring (features, tree RNNSs,
etc.) is slow, but can use global info
® Solution: Reranking

® /ICKY/Viterbi to infer top-K parses from fast CFG
model

® Score each one with NN/features
for K-way multiclass problem

® or use a ranking loss, etc.

® Reranking (fast->slow) is a very general
approach in NLP & other areas (IR, etc.)

21

Re Fan ki ng: Tree RN N [Socher et al. (2013)]

Use principle of compositionality

The meaning (vector) of a sentence
is determined by s

(1) the meanings of its words and 4 x the place where | was born
(2) the rules that combine them. ¢ cermany
x France
x Monday
xTuesday

' ' ' ' w;,; = f|Oxsy z ’
the country of my birth b f (Uk j

(Can also be used for classification or other tasks, not just parsing itself)

22

Model performance

Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%
Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%
State splitting (Petrov and Klein, 2007) 90.1%
CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%
Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

23 [From Eisenstein (2017)]

ERG

Try pressing return in this window!

ARG,
" ARG,
——

ARG,

e o
Try pressing return in this window !

S e3:
VP _1:pronoun_g¢0:35)[BV x6]
v VP x6:pron¢0:35)[]
V] VP PP e3:_try v_1(0:3){ARGT x6, ARG2 e11]
#0 try v NP | [P NP &i1:_press_v_1¢4:12)[ARG1 x6, ARG2 x12]
v N in| IDET N _2:udef_g¢13:19)[BV x12]
pressing N this N x12:_return_n_of(13:19)[]
e18:_in_p(20:22)[ARG1 e11, ARG2 x19]
= . - _3:_this_q_dem¢23:27)[BV x19]
G window!| | 19 window_n_1(28:35)[]
ARG,
-fARGZARGZ-@]n-ARGl BV 0
S e3:
VP _1:pronoun_qg0:35)[BV x6]
v VP x6:pron(0:35)[]
v v NP e3:_try_v_1(0:3)[ARG1 x6, ARG2 el1]
try v N el1:_press_v_1¢4:12)[ARG1 x6, ARG2 x12]
#1 s [0 P _2:udef_q(13:35)[BV x12]
miE NP x12:_return_n_of(13:19)[]
il BET T e18:_in_p(20:22)[ARG1 x12, ARG2 x19]
) _3:_this_q_dem(23:27)[BV x19]
(it L z x19:_window_n_1¢28:35)[]
window!|

24

25

Left-to-right models

® (Can sequence models learn hierarchical
syntactic phenomena!

® (Case study:
Subject-Verb agreement on grammatical number

(1) The key is on the table.

a

b. *The key are on the table.
c. *The keys is on the table.
d. The keys are on the table.

® N-grams can’t capture long-distance

dependencies
(2) The(keys/to the cabinet|are on the table.

3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

26 [Linzen et al. 2016]

Left-to-right sequence RNN

® Does an LSTM LM implicitly learn these syntactic rules?

® Assess number prediction by comparing e.g.
P(writes | ...

il

) vs. P(write | ...
—

)

\

Training objective ~ Sample input

(Training signalj

Prediction task

Correct answer

Number prediction The keys to the cabinet
Verb inflection The keys to the
Grammaticality

anguage model The keys to the cabinet

[is/are]

The keys to té net aré here. T GRAMMATICAL

PLURAL
PLURAL

are

e

SINGULAR/PLURAL?
SINGULAR/PLURAL?

GRAMMATICAL/UNGRAMMATICAL?

P(are) > P(is)?

PLURAL
PLURAL
GRAMMATICAL
True

Table 1:
(@) 10% -
° (b)
= 8% -
S 6% -
o
‘__E 4% -
S ou
6 "7
0v L ==
o o S) o)
ec\"‘\ og«\"’ e o o o \° °
X s o\ 29 o @
o S RNT % «© (
o B o © =\
W e’\‘\(\e' %’b'

100%

80%

60%

Error rate

40%

20%

/./’ Language modeling

Examples of the four training objectives and corresponding prediction tasks.

3aseline (common nouns)

Majority class
Grammaticality
Number prediction
Verb inflection

Left-to-right grammatical RNN

@\ Shift-reduce /parsing

One form of left-to-right / top-down parsing

Incrementally build up the parse tree, scanning words left-to-right.

® Parser as a state machine

No dynamic programming!, O(n) runtime (typically)

Potentially related to cognitive processing?

Most practically efficient for constituent parsing -- e.g. zpar and CoreNLP
implementations

e "RNN Grammars": LSTM-based stack automaton (not merely a
traditional sequence RNN)

hift-reduce)parsing

ate machine: stack and input buffer

® Decide on one of 3 actions

Stack; Buffer, Open NTs; | Action | Stack, Buffer; . ; OpenNTs;,
i B n NT(X) ST (X B n+1
S é&——— 7B n SHIFT S|z B n
il — =
S| (X || ._._:~|.7:g B n REDUCE | S| (X7 ... 74) B n—1
-7 Input: The hungry cat meows .
Stack Buffer Action
0 The | hungry | cat | meows |. | NT(S)
C|TST "The | hungry | cat| meows). | NT(NP)
> | (S| (NP . | hungry | cat | meows |. | SHIFT
3| (S (NP | The/;» _hungry | cat | meows | . SHIET
4 | (S|(NP|The|hungry = | cat|meows |. SHIFT
s | (S |£I:I‘lf_| The | huggry | cat meows |. REDUCE
6 | (S|ENP mhuﬁgry cat meows | . NT(VP)
7| (S| (NP The hungry cat) | (VP meows | . SHIFT
s | (S|(NP The hungry car) F%ﬁ’ meow{ . REDUCE
o | (S|(NP The hungry cat) | (VP meows) SHIFT
0 | (S| (NP The hungry cat) | (VP meows) | . | REDUCE
nl (S (NP The hungry cat) (VP meows) .))
\Vs

7]

[Dyer et al. 201 6]

Generation as well

Stack; Terms; Open NTs; \ Action \ Stacky Terms; . ; Open NTs;
S T n NT(X) S (X T n+1

S T n S| x T|z n

S| X|rm|...|m T n DUCE | S| (X1 ...) T n—1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T" representing the history of generated terminals.

Stack Terminals Action
) NT(S)
s NT(NP)
 { (S| (NP GEN(The)
3 [S| (NP | The The GEN (hungry)
+ | S| (NPTThe | hungry The | hungry GEN(cat)
s | (S| (NP | The Hrgngry | cat The | hungry | cat REDUCE
6 | (S|(NP The hungry cat) The | hungry | cat NT(VP)
7 | (S| (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
s | (S| (NP The hungry cat) | (VP meows The | hungry | cat | meows | REDUCE
9 | (S| (NP The hungry cat) | (VP meows) The | hungry | cat | meows GEN(.)
10 | (S| (NP The hungry cat) | (VP meows) |. | The | hungry | cat | meows|. | REDUCE

(S (NP The hungry cat) (VP meows) .)

The | hungry | cat | meows | .

Figure 4: Joint generatiomggf a parse tree and sentence.

[Dyer et al. 201 6]

Shift-reduce parsing

® Models for shift-reduce

about current state and history
® |[nfinite history, no future (contrast to PCFG assumptions!)
® @:action
® u:features/embedding of current state
® Generative form (discriminative also possible):

it St ato

|a(z,y)|

exp r; u; + bg,

T
t=1 EaleAg(ThSt,nt) eXp ra/ut + bal

3 [Dyer et al. 201 6]

® Vector representation of current stack/buffer state
_—

® Explicit log-linear features over the current stack, buffer etc.
[Ratnaparkhi 1998, Zhang+Clark 201 1]

® Neural network representation of current state [e.g. Henderson 2004,
yer et al. 2016, Bowman et al. 201 6]
® Training: extract oracle decisions paths from labeled data

® Generative model: use importance sampling to calculate feature
expectations

(S NP (VP cat hungry The

/[\ a¢

The hungry cat

Figure 5: Neural architecture for defining a distribution over a; given representations of the stack (S;), output buffer (7;) and
history of actions (a«:). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the

stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

32 [Dyer et al. 201 6]

Results: Look out for bugs.

Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-

® Even the experts have bugs!

® Many, MANY unreported
bugs in results are likely out
there

® Replication and
reimplementation are often
good ways of finding them

=

Model type | F1
Vinyals et al. (2015)* — WSJ only D | 883
Henderson (2004) D 894
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D |904
Petrov and Klein (2007) G 90.1
Bod (2003) G |90.7
Shindo et al. (2012) — single G |91.1
Shindo et al. (2012) — ensemble G 924
Zhu et al. (2013) S 913
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S |921
Discriminative, ¢(y |)T —buggy | D | 89.8
Generative, p(y | =)' - buggy G [92.4)
Discriminative, ¢(y |) —correct | D | 9
Generative, p(y |) — correct G

Table 5: Parsing results with fixed composition function on

PTB §23 (D=discriminative, G=generative, S=semisupervised).

* indicates the (Vinyals et al., 2015) model trained only on the

WSJ corpus without ensembling. | indicates RNNG models

with the buggy composition function implementation.

33

