Syntax (1)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing
http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685 s21/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst ¥4

TN

= A

® Syntax: how do words structurally combine to form
sentences and meaning?

T
® epreser\tations @ @
- |

\WE o Ca>4§
ot (‘0\1\ e Thedo %chasedﬁc}c’at
Cﬁ_\?\/ @y ﬁa bm chased the cat.
} 700w 0k’7> qw{ <y

b - g

® |dea of a grammar (G): global template for how \ -
sentences / utterances / phrases w are formed, via latent "%
syntactic structure y <

° Linguistics what do G and P(w, | G) look like?

e Generation: score W|th or sample from, P(w,y | G)

° Igarsmg. predict P(y | w, G) =z
L | =2

.‘

2

Is language context-free!

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures

® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
= b= == =]

-

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures

® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures
® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion

® Center-embedding: classic theoretical argument for CFG
vs. regular languages

[Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures
® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® Center-embedding: classic theoretical argument for CFG
vs. regular languages
® (10.1) The catis fat.

-

[Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures

® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion

® Center-embedding: classic theoretical argument for CFG
vs. regular languages

e (10.1) 7@&@}

® (10.2) The cat that the do% chased is fat.
/7

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures

® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

® Center-embedding: classic theoretical argument for CFG
vs. regular languages

e (10.1) Thecat%
® (10.2) The catthatthe dog chased is fat.

° (IO.3)ﬁThe cat that the dog is fat.

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures
® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Con ~hierarchical recursion
'ﬁembeddin classic theoretical argument for CFG
Vs. reg
® (10.1) The catis fat.
® (10.2) The cat that the dog chased is fat.
® (10.3) *The cat that the dog is fat.
® (10.4) The cat that!'-cie'dog that the monkey kissed’chased is

fat. ———

3 [Examples from Eisenstein (2017)]

Is language context-free!

® Regular language: repetition of repeated structures
® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® Center-embedding: classic theoretical argument for CFG
vs. regular languages
® (10.1) The catis fat.
® (10.2) The cat that the dog chased is fat.
® (10.3) *The cat that the dog is fat.

(10.4) The cat that the dog that the monkey kissed chased is
fat.

® (10.5) *The cat that the dog that the monkey chased is fat.

3 [Examples from Eisenstein (2017)]

Is language context-free!
——

® Regular language: repetition of repeated structures
® e.g. Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® Center-embedding: classic theoretical argument for CFG
vs. regular languages
® (10.1) The catis fat.
® (10.2) The cat that the dog chased is fat.
® (10.3) *The cat that the dog is fat.
[]

(10.4) The cat that the dog that the monkey kissed chased is
fat.

(10.5) *The cat that the dog that the monkey chased is fat.

° (Com etenceivs Performance? f

[Examples from Eisenstein (2017)]

Hierarchical view of syntax

“a Sentence made of Noun Phrase followed by
aVerb Phrase”

N
John @ arrive

the man ate an apple
the elderly janitor looked at his watch

1)

4 [From Phillips (2003)]

Is language context-free!

® Seems useful to explain e.g. nesting and
agreement

® The I 0 million times fewer
transistors on it than todays typical micro-
processors, ¥uns much more slowly, and gl/gerates >

at five tim e voltage... ——

c
e SsoNNWP

VP = VP35 [VPN3S | ..
VPTS — VP35 VIS, and VP35 [VBZ |VBZ NP | ..
_— N & .

5 [Examples from Eisenstein (2017)]

° egular | ge <=> RegEx <=> paths in finite state machine

®_cContext-free language <=> CFG <=> derivations in pushdown automaton

/b—sd

® A context-free grammar is a 4-tuple:

EN a set of non—terminalsj) _——)\/@

3 aset of terminals (distinct from V)

R aset of productions, each of the form A — {3,
where and § € (XUN)* -,

S adesignated start symbol

® Derivation: sequence of rewrite steps from S to a string (sequence of
terminals, i.e. words)

® Yield: the final string
I”

A CFG is a “boolean language mode
A probabilistic CFG is a probabilistic language model:

® Every production rule has a probability; defines prob dist. over strings.
6

Example

She eats l&@ @/%
sushl with

chopstlcks
s(np(pre She)(vr(vez eats)

(NP (N sushi))
(pp (nwith) (np (NNs chopsticks))))))

® All useful grammars are ambiguous: multiple derivations with same yield
® [Parse tree representations: Nested parens or non-terminal spans]

7 [Examples from Eisenstein (2017)]

s(np(pre She)(ve(vsz eats)
(NP (N sushi))
(pp (nwith) (np (NNs chopsticks))))))

(s(np(pre She)(vp(vez eats) i
(np (NP (N sushi)) (pp (ivwith) (np (Nws Cliopsticks)))))))

® All useful grammars are ambiguous: multiple derivations with same yield
® [Parse tree representations: Nested parens or non-terminal spans]

7 [Examples from Eisenstein (2017)]

Constituents

® Constituent tree/parse is one representation of sentence’s
syntax. What should be considered a constituent, or
constituents of the same category?

® Substitution tests
® Pronoun substitution
® (Coordination tests

® Simple grammar of English

Must balance overgeneration versus undergeneration
Noun phrases

NP modification: adjectives, PPs

Verb phrases

Coordination
® etc..

® Machine-learned grammars of English...

® Ambiguities in syntax

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.
Modifier scope southern food store

Particle versus preposition The puppy tore up the staircase.

Complement structure The tourists objected to the guide that they couldn’t hear.
Coordination scope “Isee,” said the blind man, as he picked up the hammer and saw.

Multiple gap constructions The chicken is ready to eat

9 [Examples from Eisenstein (2017)]

Parsing with a CFG

® Task: given text and a CFG, answer:

Does there exist at least one parse?
Enumerate parses (backpointers)

® Cocke-Kasami-Younger algorithm

Bottom-up dynamic programming:

Find possible nonterminals for short spans of
sentence, then possible combinations for higher
spans

Requires converting CFG to Chomsky Normal
Form
(a.k.a. binarization): always one or two RHS terms

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

NP -> Adj NP

o yummy foods , store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

NP -> store
NP -> NP NP
NP -> Adj NP

Grammar ‘
Adj -> yummy
NP -> foods

U :

|:2
NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

NP -> store
NP -> NP NP
NP -> Adj NP

Grammar ‘
Adj -> yummy
NP -> foods

U :

|:2
NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

NP -> Adj NP

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP J

o yummy foods -, store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RGA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

NP -> store
NP -> NP NP
NP -> Adj NP

Grammar ‘
Adj -> yummy
NP -> foods

U :

|:2
NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

NP -> store
NP -> NP NP
NP -> Adj NP

Grammar ‘
Adj -> yummy
NP -> foods

U :

|:2
NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy foods -, store ;

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

NP -> Adj NP

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP J

o yummy foods -, store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

NP -> Adj NP

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP J

o yummy foods -, store

For cell [i,j] (loop through them bottom-up) | |Recognizer: per span, record list of
For possible splitpoint k=(i+1)..(j-1): possible nonterminals

For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
Parser: per span, record

add A to cell [i’j] (RCA)M) possible ways the

.. OF ... nonterminal was

add (A,B,C, k) to cell [i,j] (Parser) constructed.

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

Complexity !
How do we fill in C(1,2)? <>

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

How do we fill in C(1,2)? <> ComP|eXity ?
Put together C(1,1 <>
and C?2,2). ah <><><>
RS
QAT
6000000

1 2 3

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

How do we fill in C(1,3)? <> Complexity ?
S
ooy
eo0000

1 2 3 n

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

Complexity !

S ©<><><>
2
@%><> TN

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

How do we fill in C(1 ’3)?<><><> Complexity ?
P <><><><<i<><<i
PSPPI

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i]] Computational

How do we fill in C(1 n<),,> <%><> Complexity ?
RIS
00000

1 2 3 n

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

%@g@
LR
s00004¢

3 n

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity !

<>><><>Q<>© cepm
POPPPS

0069

3 n

[Example from Noah Smith]

Probabilistic CFGs

S — NPVP 1.80] || Det — that [.10] | @ [.30] | the [.60]
S — Aux NP VP [.15] Noun — book [.10] | flight [.30]
S — vp .05] | meal [.15] | money [.05]
NP — Pronoun [.35] | flights [.40] | dinner [.10]
NP — Proper-Noun [.30] Verb — book [.30] | include [.30]
NP — Det Nominal [.20] | prefer;[.40]
NP — Nominal [.15] Pronoun — 1[.40] | she [.05]
Nominal — Noun [.75] | me [.15] | you [.40]
Nominal — Nominal Noun [.20] Proper-Noun — Houston [.60)]
Nominal — Nominal PP [.05] | TWA [.40]
VP — Verb [.35] Aux — does [.60] | can [40]
VP — Verb NP .20] Preposition — from [.30] | to [.30]
VP — Verb NP PP [.10] | on[.20] | near [.15]
VP — Verb PP [.15] | through [.05]
VP — Verb NP NP 03]
VP — VP PP .15]
PP — Preposition NP [1.0]

® Defines a probabilistic generative process for words in a sentence

® Extension of HMMs, strictly speaking
® (How to learn? Fully supervised with a treebank... EM for unsup...)

21 [J&M textbook]

((s
(NP-SBJ (NNP General) (NNP Electric) (NNP Co.))
(VP (VBD said)
(SBAR (-NONE- 0)
(S
(NP-SBJ (PRP it))
(VP (VBD signed)
(NP
(NP (DT a) (NN contract))
(PP (-NONE- *ICH*-3)))
(PP (IN with)
(NP
(NP (DT the) (NNS developers))
(PP (IN of)
(NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))
(PP-3 (IN for)

(NP
(NP (DT the) (JJ second) (NN phase))
F)€3r1r1 (PP (IN of)
(NP
Treebanl((NP (DT an) (JJ independent)
(ADJP

(QP ($ $) (CD 400) (CD million))
(-NONE- *U*))
(NN power) (NN plant))
(/)
(SBAR
(WHNP-2 (WDT which))
(S
(NP-SBJ-1 (-NONE- *T*-2))
(VP (VBZ is)
(VP (VBG being)
(VP (VBN built)
(NP (-NONE- *-1))
(PP-LOC (IN in)
(NP
(NP (NNP Burrillville))
()
(NP (NNP R.I)))))))))))))))))

22

(P)CFG model, (P)CKY algorithm

e CKY:given CFG and sentence w
® Does there exist at least one parse!
® Enumerate parses (backpointers)

® Probabilistic/Weighted CKY: given PCFG and sentence w
® Likelihood of sentence P(w)

® Most probable parse (“Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)
® Non-terminal span marginals (Inside-outside algorithm)

® Discriminative Tree-CRF parsing:
argmaxy P(y | w)

23

® Parsing model accuracy: lots of ambiguity!!

® PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

® Need to add word embeddings or other lexical information
to enrich phrase representations

® Parsers’ computational efficiency

® Grammar constant; pruning & heuristic search
® O(N3) for CKY (ok? sometimes...)
® O(N) left-to-right incremental algorithms

® Evaluate: precision and recall of labeled spans
® Treebank data

24

Better PCFG grammars

® | exicalization: encode semantic preferences

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP

VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N*EX$ CD QP PRP...

PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine) NP(wine)
NP (wine) CC NP(Italy) NP(wine) PP(from)
—_— | | | -
NP (wine) PP(from) and NNS NN IN NP (France)
| — | | | —
NN IN NP(France) Ttaly wine from NP(France) CC NP(Italy)
| | |
wine from NI‘\TP Nl‘\T P and Nl‘\T S
| | |
France France Italy
VP (meet) VP (meet)
- —
VB NP(President) PP(on) VB NP (President)
\ — — \
meet DT NN P NP meet NP(President) PP(of)
[[| [— —
the President on NN DT NN P NP
[[[[[
Monday the President of NN

|
Mexico

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

25 [From Eisenstein (2017)]

Reranking

® (CRF/Neural/etc.) CFGs are fast, but only use
local info

® Whole-structure scoring (features, tree RNNSs,
etc.) is slow, but can use global info

® Solution: Reranking

® CKY/Viterbi to infer top-K parses from fast CFG
model

® Score each one with NN/features
for K-way multiclass problem

® or use a ranking loss, etc.

26

Re Fan ki ng: Tree RN N [Socher et al. (2013)]

Use principle of compositionality

The meaning (vector) of a sentence
is determined by s

(1) the meanings of its words and 4 x the place where | was born
(2) the rules that combine them. ¢ cermany
x France
x Monday
xTuesday

' ' ' ' w;,; = f|Oxsy z ’
the country of my birth b f (Uk j

(Can also be used for classification or other tasks, not just parsing itself)

27

® stopped here 3/9

28

Model performance

Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%
Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%
State splitting (Petrov and Klein, 2007) 90.1%
CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%
Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

29 [From Eisenstein (2017)]

Treebanks

® Penn Treebank (constituents, English)
® http://www.cis.upenn.edu/~treebank/home.html

® Recent revisions in Ononotes

® Universal Dependencies
® http://universaldependencies.org/

® Prague Treebank (syn+sem)
® many others...

e Know what you're getting!

30

More sophisticated formalisms

® Beyond CFGs (“Mildly context-sensitive”)

® e.g. Combinatory Categorial Grammar, Tree Adjoining
Grammar, unification grammars ...

® Extend CFGs to incorporate features to enforce grammatical
constraints, or lay the groundwork for meaning interpretation

® English Resource Grammar: a hand-engineered

grammar-+parser

® http://erg.delph-in.net/logon

® Head-driven Phrase Structure Grammar (HPSG)
® Parse forest -- from a CKY-like chart
[]

Dependencies integrated with constituents
(Next time: dep parsing as its own task)

® ML-based parsers are SOTA: coverage and resolving
ambiguities

31

ERG

Try pressing return in this window!

ARG,
" ARG,
——

ARG,

e o
Try pressing return in this window !

S e3:
VP _1:pronoun_g¢0:35)[BV x6]
v VP x6:pron¢0:35)[]
V] VP PP e3:_try_v_1¢0:3)[ARG1 x6, ARG2 e11]
#0 try v NP | [P NP el1:_press_v_1¢4:12)[ARG1 x6, ARG2 x12]
v N in| IDET N _2:udef_g¢13:19)[BV x12]
pressing| | N this N x12:_return_n_of(13:19)[]
e18:_in_p(20:22)[ARG1 e11, ARG2 x19]
= . - _3:_this_q_dem¢23:27)[BV x19]
G window!| | 19 window_n_1(28:35)[]
ARG,
-fARGZARGZ-@]n-ARGl BV 0
S e3:
VP _1:pronoun_qg0:35)[BV x6]
v VP x6:pron(0:35)[]
v v NP e3:_try_v_1(0:3)[ARG1 x6, ARG2 el1]
try v N el1:_press_v_1¢4:12)[ARG1 x6, ARG2 x12]
#1 s [0 P _2:udef_q(13:35)[BV x12]
miE NP x12:_return_n_of(13:19)[]
N inl BETI T e18:_in_p(20:22)[ARG1 x12, ARG2 x19]
) _3:_this_q_dem(23:27)[BV x19]
(it L z x19:_window_n_1¢28:35)[]
window!|

32

