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• Syntax: how do words structurally combine to form 
sentences and meaning?

• Representations

• Constituents

• [the big dogs] chase cats

• [colorless green clouds] chase cats

• Dependencies

• The dog ← chased the cat.

• My dog, a big old one, chased the cat.

• Idea of a grammar (G):  global template for how 
sentences / utterances / phrases w are formed, via latent 
syntactic structure y

• Linguistics:    what do G and P(w,y | G) look like?

• Generation:   score with, or sample from, P(w, y | G)

• Parsing:         predict P(y | w, G)
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• Regular language: repetition of repeated structures

• e.g. Justeson and Katz (1995)’s noun phrase pattern: 
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Is language context-free?
• Regular language: repetition of repeated structures

• e.g. Justeson and Katz (1995)’s noun phrase pattern: 
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• Context-free: hierarchical recursion

• Center-embedding: classic theoretical argument for CFG 
vs. regular languages

• (10.1)  The cat is fat. 
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Is language context-free?
• Regular language: repetition of repeated structures

• e.g. Justeson and Katz (1995)’s noun phrase pattern: 
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

• Context-free: hierarchical recursion

• Center-embedding: classic theoretical argument for CFG 
vs. regular languages

• (10.1)  The cat is fat. 

• (10.2)  The cat that the dog chased is fat. 

• (10.3)  *The cat that the dog is fat. 

• (10.4)  The cat that the dog that the monkey kissed chased is 
fat. 

• (10.5)  *The cat that the dog that the monkey chased is fat.  

• Competence vs. Performance?
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Hierarchical view of syntax

• “a Sentence made of Noun Phrase followed by 
a Verb Phrase”
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Is language context-free?

• Seems useful to explain e.g. nesting and 
agreement

• The processor has 10 million times fewer 
transistors on it than todays typical micro- 
processors, runs much more slowly, and operates 
at five times the voltage...  

•      S → NN  VP 
    VP → VP3S | VPN3S | . . .  
VP3S → VP3S, VP3S, and VP3S | VBZ | VBZ NP | . . . 

5 [Examples from Eisenstein (2017)]
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• A context-free grammar is a 4-tuple:

6

180 CHAPTER 10. CONTEXT-FREE GRAMMARS

• pushdown automata define context-free languages;

• Turing machines define recursively-enumerable languages.

In the Chomsky hierarchy, context-free languages (CFLs) are a strict generalization of
regular languages.

regular languages context-free languages

regular expressions context-free grammars (CFGs)
finite-state machines pushdown automata
paths derivations

Context-free grammars define CFLs. They are sets of permissible productions which
allow you to derive strings composed of surface symbols. An important feature of CFGs
is recursion, in which a nonterminal can be derived from itself.

More formally, a CFG is a tuple hN, ⌃, R, Si:

N a set of non-terminals
⌃ a set of terminals (distinct from N )
R a set of productions, each of the form A ! �,

where A 2 N and � 2 (⌃ [ N)
⇤

S a designated start symbol

Context free grammars provide rules for generating strings.

• The left-hand side (LHS) of each production is a non-terminal 2 N

• The right-hand side (RHS) of each production is a sequence of terminals or non-
terminals, {n, �}

⇤, n 2 N, � 2 ⌃.

A derivation t is a sequence of steps from S to a surface string w 2 ⌃
⇤, which is the

yield of the derivation. A derivation can be viewed as trees or as bracketings, as shown
in Figure 11.4.

If there is some derivation t in grammar G such that w is the yield of t, then w is in
the language defined by the grammar. Equivalently, for grammar G, we can write that
|TG(w)| � 1. When there are multiple derivations of w in grammar G, this is a case of
derivational ambiguity; if any such w exists, then we can say that the grammar itself is
ambiguous.

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Derivation: sequence of rewrite steps from S to a string (sequence of 
terminals, i.e. words)

• Yield: the final string

• A CFG is a “boolean language model”

• A probabilistic CFG is a probabilistic language model:

• Every production rule has a probability; defines prob dist. over strings.

•     Regular language     <=>  RegEx <=> paths in finite state machine

• Context-free language <=>  CFG   <=> derivations in pushdown automaton
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Example

• All useful grammars are ambiguous: multiple derivations with same yield

• [Parse tree representations: Nested parens or non-terminal spans]
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Figure 10.1: Two derivations of the same sentence, shown as both parse trees and brack-
etings

(c) Jacob Eisenstein 2014-2017. Work in progress. [Examples from Eisenstein (2017)]
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Constituents
• Constituent tree/parse is one representation of sentence’s 

syntax.  What should be considered a constituent, or 
constituents of the same category?

• Substitution tests

• Pronoun substitution

• Coordination tests

• Simple grammar of English

• Must balance overgeneration versus undergeneration

• Noun phrases

• NP modification: adjectives, PPs

• Verb phrases

• Coordination

• etc...

• Machine-learned grammars of English...

8
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• Ambiguities in syntax

9

196 CHAPTER 11. CFG PARSING

Time The time complexity is O(M3
#|R|). At each cell, we search over O(M) split points,

and #|R| productions, where #|R| is the number of production rules in the gram-
mar.

Notice that these are considerably worse than the finite-state algorithms of Viterbi and
forward-backward, which are linear time; generic shortest-path for finite-state automata
has complexity O(M log M). As usual, these are worst-case asymptotic complexities. But
in practice, things can be worse than worst-case! (See Figure 11.2) This is because longer
sentences tend to “unlock” more of the grammar — they involve non-terminals that do
not appear in shorter sentences.

Figure 11.2: Figure from Dan Klein’s lecture slides

11.2 Ambiguity in parsing

In many applications, we don’t just want to know whether a sentence is grammatical, we
want to know what structure is the best analysis. Unfortunately, syntactic ambiguity is
endemic to natural language:2

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.

Modifier scope southern food store

Particle versus preposition The puppy tore up the staircase.

Complement structure The tourists objected to the guide that they couldn’t hear.

Coordination scope “I see,” said the blind man, as he picked up the hammer and saw.

Multiple gap constructions The chicken is ready to eat

These forms of ambiguity can combine, so that a seemingly simple sentence like Fed
raises interest rates can have dozens of possible analyses, even in a minimal grammar. Real-
size broad coverage grammars permit millions of parses of typical sentences. Faced with
this ambiguity, classical parsers faced a tradeoff:

2Examples borrowed from Dan Klein’s slides

(c) Jacob Eisenstein 2014-2017. Work in progress.[Examples from Eisenstein (2017)]



Parsing with a CFG

• Task: given text and a CFG, answer:

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Cocke-Kasami-Younger algorithm

• Bottom-up dynamic programming: 
Find possible nonterminals for short spans of 
sentence, then possible combinations for higher 
spans

• Requires converting CFG to Chomsky Normal 
Form 
(a.k.a. binarization):  always one or two RHS terms

10
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Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j] Computational 

Complexity ?

[Example from Noah Smith]
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Probabilistic CFGs
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• Defines a probabilistic generative process for words in a sentence

• Extension of HMMs, strictly speaking

• (How to learn?  Fully supervised with a treebank... EM for unsup...)

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

[J&M textbook]
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( (S  
    (NP-SBJ (NNP General) (NNP Electric) (NNP Co.) ) 
    (VP (VBD said)  
      (SBAR (-NONE- 0)  
        (S  
          (NP-SBJ (PRP it) ) 
          (VP (VBD signed)  
            (NP  
              (NP (DT a) (NN contract) ) 
              (PP (-NONE- *ICH*-3) )) 
            (PP (IN with)  
              (NP  
                (NP (DT the) (NNS developers) ) 
                (PP (IN of)  
                  (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project) )))) 
            (PP-3 (IN for)  
              (NP  
                (NP (DT the) (JJ second) (NN phase) ) 
                (PP (IN of)  
                  (NP  
                    (NP (DT an) (JJ independent)  
                      (ADJP  
                        (QP ($ $) (CD 400) (CD million) ) 
                        (-NONE- *U*) ) 
                      (NN power) (NN plant) ) 
                    (, ,)  
                    (SBAR  
                      (WHNP-2 (WDT which) ) 
                      (S  
                        (NP-SBJ-1 (-NONE- *T*-2) ) 
                        (VP (VBZ is)  
                          (VP (VBG being)  
                            (VP (VBN built)  
                              (NP (-NONE- *-1) ) 
                              (PP-LOC (IN in)  
                                (NP  
                                  (NP (NNP Burrillville) ) 
                                  (, ,)  
                                  (NP (NNP R.I) ))))))))))))))))

Penn
Treebank



(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers) 

• Probabilistic/Weighted CKY: given PCFG and sentence w

• Likelihood of sentence P(w)

• Most probable parse  (“Viterbi parse”) 
argmaxy P(y | w) = argmaxy P(y, w)

• Non-terminal span marginals  (Inside-outside algorithm)

• Discriminative Tree-CRF parsing: 
argmaxy P(y | w)

23



• Parsing model accuracy:  lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities 
(sneak in world knowledge?)

• Need to add word embeddings or other lexical information 
to enrich phrase representations

• Parsers’ computational efficiency

• Grammar constant;  pruning & heuristic search

• O(N3) for CKY (ok? sometimes...)

• O(N) left-to-right incremental algorithms

• Evaluate: precision and recall of labeled spans

• Treebank data

24



• Lexicalization: encode semantic preferences

25

208 CHAPTER 11. CFG PARSING

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N* EX $ CD QP PRP . . .
PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine)

NP(Italy)

NNS

Italy

CC

and

NP(wine)

PP(from)

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

NP(wine)

PP(from)

NP(France)

NP(Italy)

NNS

Italy

CC

and

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

VP(meet)

PP(on)

NP

NN

Monday

P

on

NP(President)

NN

President

DT

the

VB

meet

VP(meet)

NP(President)

PP(of)

NP

NN

Mexico

P

of

NP(President)

NN

President

DT

the

VB

meet

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

walk, since can is tagged MD), noun phrases are headed by the rightmost noun-like non-
terminal (so the head of the red cat is cat), and prepositional phrases are headed by the
preposition (the head of at Georgia Tech is at). Some of these rules are somewhat arbitrary
— there’s no particular reason why the head of cats and dogs should be dogs — but the
point here is just to get some lexical information that can support parsing, not to make
any deep claims about syntax.

Given these rules, we can lexicalize the parse trees for some of our examples, as shown
in Figure 11.9.

• In the upper part of Figure 11.9, we see how lexicalization can help solve coordina-
tion scope ambiguity; if,

P (NP ! NP(France) CC NP(Italy)) > P (NP ! NP(wine) CC NP(Italy)), (11.15)

we should get the right parse.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]



Reranking

• (CRF/Neural/etc.) CFGs are fast, but only use 
local info

• Whole-structure scoring (features, tree RNNs, 
etc.) is slow, but can use global info

• Solution: Reranking
• CKY/Viterbi to infer top-K parses from fast CFG 

model

• Score each one with NN/features 
for K-way multiclass problem

• or use a ranking loss, etc.

26



how do we learn phrase vectors?

 24

How	should	we	map	phrases	into	a	vector	space?	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

2.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

Use	principle	of	composi%onality	
The	meaning	(vector)	of	a	sentence	
is		determined	by		
(1) the	meanings	of	its	words	and	
(2) the	rules	that	combine	them.	

Models	in	this	sec%on	
can	jointly	learn	parse	
trees	and	composi%onal	
vector	representa%ons	

x2	

x1				0								1						2							3						4						5						6						7							8						9					10	

5	

4	

3	

2	

1	

		the	country	of	my	birth	

		the	place	where	I	was	born	

Monday	

Tuesday	

France	
Germany	

12	

Reranking: TreeRNN
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rule (Socher et al., 2013), e.g.,

ui,j = f

✓
⇥X!Y Z


ui,k

uk,j

�◆
[10.44]

The overall score of the parse can then be computed from the final vector,  (⌧) =
✓u0,M .

Reranking can yield substantial improvements in accuracy. The main limitation is that it
can only find the best parse among the K-best offered by the generator, so it is inherently
limited by the ability of the bottom-up parser to find high-quality candidates.

10.6.2 Transition-based parsing

Structure prediction can be viewed as a form of search. An alternative to bottom-up pars-
ing is to read the input from left-to-right, gradually building up a parse structure through
a series of transitions. Transition-based parsing is described in more detail in the next
chapter, in the context of dependency parsing. However, it can also be applied to CFG
parsing, as briefly described here.

For any context-free grammar, there is an equivalent pushdown automaton, a model
of computation that accepts exactly those strings that can be derived from the grammar.
This computational model consumes the input from left to right, while pushing and pop-
ping elements on a stack. This architecture provides a natural transition-based parsing
framework for context-free grammars, known as shift-reduce parsing.

Shift-reduce parsing is a type of transition-based parsing, in which the parser can take
the following actions:

• shift the next terminal symbol onto the stack;

• unary-reduce the top item on the stack, using a unary production rule in the gram-
mar;

• binary-reduce the top two items onto the stack, using a binary production rule in the
grammar.

The set of available actions is constrained by the situation: the parser can only shift if
there are remaining terminal symbols in the input, and it can only reduce if an applicable
production rule exists in the grammar. If the parser arrives at a state where the input
has been completely consumed, and the stack contains only the element S, then the input
is accepted. If the parser arrives at a non-accepting state where there are no possible
actions, the input is rejected. A parse error occurs if there is some action sequence that
would accept an input, but the parser does not find it.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

[Socher et al. (2013)]

(Can also be used for classification or other tasks, not just parsing itself)



• stopped here 3/9
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Model performance

29
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Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%

Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%

State splitting (Petrov and Klein, 2007) 90.1%

CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%

Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

alternative not described in detail here is the self-training parser of McClosky et al. (2006),
which automatically labels additional training instances, and then uses them for learning.
Self-training is often considered to be a risky technique in machine learning, since the
automatically-labeled instances can cause the classifier to “drift” away from the correct
model (Blum and Mitchell, 1998).

Recent work has applied neural representations to parsing, representing units of text
with dense numerical vectors (Socher et al., 2013a; Durrett and Klein, 2015). Neural ap-
proahes to natural language processing will be surveyed in chapter 21. For now, we note
that while performance for these models is at or near the state-of-the-art, neural net ar-
chitectures have not demonstrated the same dramatic improvements in natural language
parsing as in other problem domains, such as computer vision (e.g., Krizhevsky et al.,
2012).

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]



Treebanks

• Penn Treebank (constituents, English)

• http://www.cis.upenn.edu/~treebank/home.html

• Recent revisions in Ononotes

• Universal Dependencies

• http://universaldependencies.org/

• Prague Treebank (syn+sem)

• many others...

• Know what you’re getting!
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More sophisticated formalisms
• Beyond CFGs (“Mildly context-sensitive”)

• e.g. Combinatory Categorial Grammar,  Tree Adjoining 
Grammar, unification grammars ...

• Extend CFGs to incorporate features to enforce grammatical 
constraints, or lay the groundwork for meaning interpretation

• English Resource Grammar:  a hand-engineered 
grammar+parser

• http://erg.delph-in.net/logon

• Head-driven Phrase Structure Grammar (HPSG)

• Parse forest -- from a CKY-like chart 

• Dependencies integrated with constituents 
(Next time: dep parsing as its own task)

• ML-based parsers are SOTA: coverage and resolving 
ambiguities
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ERG
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