Sequence Labeling/Modeling (I1)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing
http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685 s21/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Feedback

e Comment complaining non-neural content is
"outdated”

e Sorry | disagree! As you know, this course takes
an integrative approach to NLP.

Today

¢ Hidden Markov model, continued
« HMM as LM: forward algo, neural HMM
* HMMs vs RNNs
¢/ Viterbi decoding - HMM as sequence labeler
¢ / Conditional random fields - discriminative HMM

HMM forward inference

.—\‘,D

p(w,y) = Pyt | ye—1)p(wy | Y1)) @
IZJ;“/ = T—

AR 4_»;

whole-sentence scoring
Wt.1) , Next-word prediction

\j‘a(’a{{ 0‘10 "{eV' \RC'('\PQ
e Bl dyo & egoned ks

AR Wé/(>
”—% P we , e, N W‘é"> M

4
= W‘*’j ():J;f WKTWE\&W}
i;w\;w |] =~y B’CJ

E:N\TSS G Q'D\J 0

i /
Forward algo. as trellis Ve
§e£§T ?C\H;))f_\g\’:g Mt

=
— ﬁi% ?/gmd\ym) %(Wﬁ /j’f>
7 R
> —%j?, =
@b> <29\ JE—
NN e - D—=—=3(ST6®
She== = i

O o0

G LTS B
-

)

Unsug. HMM for LM

e First-order HMM with thousands of states, and neural nets for

transition & emission probs; block structure for inference efficiency
¢ |nference: farward algo for next-word prediction

* Learning: gradient of log marginal probability, log p(x)
(alternative or related to EM; see their EMNLP 2018 tutorial, sec 5)

Q A
™ N
p(x,2z;0) = Hp(xt | 2)p(2t | 2t-1)., (1) E
t=1

Our parameterization uses an embedding for
each state in Z (E, € RIZI*") and each token
in X (E, € RI**") From these we can create
representations for leaving and entering a state, as
well as emitting a word:

Hout7 Hina Hemit = MLP! E;
} - 4 Figure 1: The emission matrix as a set of blocks
with all in RIZ1*", The HMM distributional param- Oy,...,0, with fixed number of states k. The

columns of each block may vary, as there is no con-
straint on the number of words a state can emit. Each
non-zero cell is constructed from an MLP applied to

O x eXp(HemitEI @‘ A x eXp(HinHiry word E,, and state E, embeddings.

eters are then computed as,*

) [Chiu and Rush 2020]

Model Param Val Test

PENN TREEBANK

KN 5-gram M - 1412
AWD-LSTM 24M 600 573
256 FF 5-gram 29M 1599 15 200 |-
2x256 dim LSTM 3.6M 7936 888
HMM+RNN 10M 1423 - >

{HMM | 2] = 900 10M ;28456° - ~ ol

| VL-HMM || = 2151 11.4M T125.00\ 116.0
WIKITEXT ‘ ‘ | | | |

10 11 12 13 1

KN 5-gram 57M 2487 2343 20 20 2 2 2
AWD-LSTM 33M 68.6 658 2]
;igslzl:fs_%nm Szﬁ ?;gz 1?2(5) Figure 3: Perplexity on PTB by state size | Z| (A = 0.5

and M = 128).
VL-HMM |Z| =2 17.3M 166.6 1582

Table 1: Perplexities on PTB / WIKITEXT-2. The
HMM+RNN and HMM of Buys et al. (2018) reported
validation perplexity only for PTB.

Wetdy [A
Are they related? ﬁ&%c W2h

h
2k 7
HMM 371 5\[72“% RNN i/}f\,} w%
Shake S S oK
ng(ofﬁ Y e 7l \A‘g (fhf @ef\/i I/\(%(R
Q &
e iy T bt & W:W
0(ve [) éS@QCm P
o) o Lpanin

Viterbi algorithm

e (Goal: given entire input sequence w1..wrt, jointly predict best
output sequence ¥1..yT ==
* Why can't you do simply do this left-to-right?

[% @3~)
@%@%\§© LA -l Wjﬂ&ﬂyu

4

\m) w\) <\V J&vﬂ(\/

W
i Vel Moa@ 127 QY
N A Jﬁ U\C\A W< ij’

How to build a POS tagger?

® Sources of information:

® POS tags of surrounding words:
syntactic context

® The word itself

® Features, etc.!

Word-internal information
Features from surrounding words
External lexicons

Embeddings, NN states

~—HMM

< Classifier

—CRF

[BERT/ELMO may be sufficient alternatives to sharing contextual information”]

® Seq.labeling as log-linear structured prediction

Y. = argmax 9Tf(’w1:M, yl:M):
yl:Mey(wl:M)

° Example° the Hidden Markov model

prt|yt)p(we | ye)

® w: Text Data

® y: Proposed class or sequence

® O: Feature weights (model parameters)
® f(x,y): Feature extractor, produces feature vector

® Seq. labeling as log-linear structured prediction

Y. = argmax 9Tf(’w1:M,y1:M),
yl:Mey(wl:M)

° Example' the Hidden Markov model

prt|yt)p(we | ye)

ext: Conditional Random Fields

exp(0f(Wi.ar, Y1:01))
nylegy(wle) eXP(eTf(leMa ylle))

ply | w) =

* for carefully chosen f

HMM as log-linear \@

Hp wylye) p(ye|ye—1)

g\ogﬂmz Zj@o(wg o)+ fosp(uly 1),

1
G(y) Bi(yt) A(Ye—1,9t)
goodness emission factor score transition factor score
log p(y, w Z¢t Yt—1, Yt)
i

pair factor score

Decoding problem arg max G(y™)
(Viterbi algorithm) y* Coutputs(w)

13

HMM as log-linear

® HMM as a joint log-linear model

Py, w) = HP(yt | ye—1)P(we | ye)
P(y,w) = exp(0" f(y, w))

f(y7 ,w) — Z f(yt—la Ye, wt) Local features only!
t

(Allows efficient inference)

e.g. {(N,V):1, (V,dog): I}
What are the weights?

® This implies the conditional is also log-linear
Py | w) ocexp(0' f(y, w))

14

From HMMs to CRFs

e |. Discriminative learning: take HMM
features, but set weights to maximize
conditional LL of labels

e 2. More features: affix, positional, feature
templates, embeddings, etc.
® For efficient inference: make sure to preserve

Markovian structure within the feature
function (e.g. first-order CRF)

finna bless us

y= [S] v v Vv

Tags: "V"erb and pr'O"noun (and [S]tart)
Let’s use three feature templates:

Word-tag observation “ends with s”—tag features:
features: for example fy/_g(X,y) = number of
fy dog(x,y) = number of -S

Transition features:
for example

fyy(X.y) = number of tokens that end with -s and
tokens that are word “dog” || are tagged as Verb

under a Verb tag

V-V transitions in y

(Global features have to be COUNTS: the reason why is further below.)
For 3 word vocabulary and 2 tag types, that’s J=14 total features.
Assume we have fixed model weights 8 and would like to score the goodness of
the above tag sequence.
&g
O F P I F o »

N O ;
9 «9D \§ \A \O «O «D W AT oo ?\O" «O"« O A O

Global feature vector f(x,y)=| 1 |0 |2 [0 |0 |O |1 (1]|1]O0O|0O]|]0[2]0
v 2 & &

A O & g 9 3 4
QD P %§ <z>A an PO N N N P P P ™ O

Model parameters 0 = -0.2 |-0.8|+0.1]+0.5|+4.3|-0.3|-1.2|-0.1 |+0.1|+5.3|-4.1|-0.3 |+1.1|+2.2

Goodness score G(y) = 0'f(xz,y) Z@ filz,y)

= —0.2+0+0.2 +0 +0+0 -1.2+0+0.1 +5.3+0+0+2.2+0

16

Global feature vector is from the sum of local feature vectors

f(z,y) = th(yt—hyt,xt)

fi(y:—1,ys, x+) = local feature vector including the transition between these two tags,
and the observation of word at position t.

The local features are, for example:
fyy(yprev, yeur, curword) = {1 if yprev=V and ycur=V, else 0}

fy dog(yprev, ycur, curword) = {1 if ycur=V and curword="dog”, else 0}

fV_S(yprev, ycur, curword) = {1 if ycur=V and curword ends in “s”, else 0}

And so on, repeated for different tags and words.

Example

«9 \‘é) s\§ \Q \6 «O \4.“ «QY (AT (0"« O™ 1O 4" «O
f(START,V, finna) [1 [0 |0 [0 f0|O|[1f0]jO0|OfO0|O0O|O]O
+f(V,V,bless) o |o|1|o|o|lo]|Oo|1]Oof0o|O0fO]|1]0O
+f(V,Vus) fo|lo|1]ofoflo]ofo|1|O0]O]|Of1]0O
= f(x=finna bless us,y=VVV)= |1 |02 |0|O0O|O |1 [1[1]O0O(O0O]JO0O]2(O0

Local feature decomposition implies that the scoring function decomposes, too.
Gy)=0f(x,y) =0 filye—1, v, 20) = >0 felye-1, 90, 21)
t t

= 0'f(START, V, finna) + 0'f(V, V, bless) + 0’f(V, V, us)

-0.21-0.8 |+0.1|+0.5|+4.3|-0.3|-1.2]-0.1 |+0.1 [+5.3] -4.1 |-0.3 |+1.1]+2.2

= dotprod
IO(10000010000000

+
-0.2(-0.8 [+0.1]+0.5|+4.3|-0.3|-1.2]-0.1 [+0.1 [+5.3|-4.1 |-0.3 [+1.1|+2.2

d°tpr°d(oo1oooo1oooo1o

+
-0.21-0.8 |+0.1|+0.5|+4.3|-0.3|-1.2]-0.1 [+0.1 [+5.3] -4.1 |-0.3 |+1.1]+2.2

dotprod (

Learning a CRF

® Gradient descent on negative conditional LL

® | og-linear gradient:
sum over all possible predicted structures
(Forward-Backward for marginalization)

® Non-probabilistic losses: compare gold structure
to only one predicted structure

® Structured perceptron algorithm:
Collins, 2002 (recent Test of Time award)

® Structured SVM (hinge loss)
® (Viterbi for best-structure)

Learning a CRF: max CLL

log po(y | w) = 0" f(y,w) —log » "exp(6' f(y,w))

dlogpy(...) !
%Zé 2= filyw) = Y ey’ | w)fi(y,w)
J y’

® Apply local decomposition

= (ij(ytlaytywt> ZPG y' | w) Z (yt 1vyt>wt)

Real feature value Expected feature value

| |
- Z (fﬂ (Ye—1, Ye, we) Z Po yt 17yt | w)f](yt 17yt7wt))
t

YisYs_q

Tag marginals (to compute: forward-backward)

Seq. Labeling inference

® P(w): Likelihood (generative model)
® Forward algorithm. Each step: sum over all possible prefixes
® P(y| w): Predicted sequence (“decoding”)
® Viterbi algorithm. Each step: consider each best possible prefix
® Need for supervised struct perceptron / SSVM
learning
® P(ym | W) and P(ym, Ym-1 | W):
Predicted tag (and tag pair) marginals
® Forward-Backward algorithm
® Need for supervised CRF learning
® Need for unsupervised HMM learning

21

Forward-Backward

Want: a pair marginal
Zy:Ym:k,Ym_lzk’ Hr]\f:l exp Sn(yna yn—l)

PI‘(Ym_l = k/,Ym =k | ’UU) = Wi
Zy’ Hn:l exp Sn(y;“ y;z—l)

To get: sum out left/right-side paths

am—_1(k") expsm(k, k)

P (k)

Figure 7.3: A schematic illustration of the computation of the marginal probability
Pr(Y,,—1 = k', Y,, = k), using the forward score a,,—1 (k") and the backward score f3,,, (k).

22 [Diagram: Jacob Eisenstein]

Forward recurrence

ozm(ym) = Z H exXp Sn(ynayn—l)

Yi1:m—1n=1

m—1

= (exp sm(Ym:¥m-1)) >] x50 ¥n:yn-1)

Ym—1 Y1:m—2 n=1

- Z (exp Sm(ymyym—l)) X Oém—l(ym_l).

Ym—1

Backward recurrence 41

Bm(k) = Z H €Xp Sn(ynayn—l)

ym:M:Ym:k n=m

= Z exp Smi1(k’, k) X Bt (k).
kKey 23

Baum-Welch: EM for HMMs

® When complete LL is easy to maximize, as in the simple
count-based HMM

® |t's an optimization method for the marginal LL

® For linear or NN parameterizations, backprop implicitly
does an E-step for you; no need for explicit E/M alternation

e E-step: calculate marginals with forward-backward
® p(yel,yt| wWi.wr)
® p(yc|wi.wr)
e M-step: re-estimate parameters from expected counts
® Transitions: will use pair marginals
® Emissions: will use tag marginals

® Learns soft clusters kind-of-like POS tags

24

Structured Perceptron

® Viterbi is very common for decoding.

Inconvenient that you also need forward-
backward for CRF learning

® Collins 2002: actually you can directly train only
using Viterbi: structured perceptron

® Theoretical results hold from the usual perceptron...

® Important extension in NLP: Structured SVM

® alk.a. Structured large-margin/hinge-loss
energy network

a.k.a. Cost-augmented perceptron

® SP, SSVM, CRF training are variants of highly
related objective functions and SSGD updates

25

Structured/multiclass Perceptron
(for any log-linear model)

® For ~10 iterations

® For each (x,y) in dataset
e PREDICT

y* = argmax 6 f(z,y)
y/

® |F y=y* do nothing
® ELSE update weights
0:=0+rflz,y)— flz,y")

_— | |

learning rate constant Features for Features for
e.g r=| TRUE output PREDICTED output

Does this look similar to the CRF CLL gradient?

Perceptron notes/issues

® [ssue: does it converge! (generally no)
® Solution: the averaged perceptron

® Can you regularize it? No... use SSVM instead
(cost-augmented perceptron)

® StructPerc and CRF perform similarly in practice

27

CRF extensions

® Not just chains
® 2nd-order, 3rd-order Markov assumptions...
® Trees...

® Grids, social networks, etc... any situation where
you want interdependence of the latent (predicted)
variables

® Best:a low-treewidth DGM (why?)

28

Structured Pred. and NNs

adeoffs |
° +/simple input model?
RF and lines atures)
Vs.

+ complex input model?
ith LSTM “features”

® Can combine both! (e.é. BiLSTM-CRF)
—

® RNNs as alternative to probabilistic model-based message
assing
® Success of BERT representation + indep classifier suggests
BERT (or similar) is already combining significant information

® Other work (e.g.VAEs): NNs for inference
%? ——

29

