Sequence Labeling/Modeling (II)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing <u>http://brenocon.com/cs685</u> <u>https://people.cs.umass.edu/~brenocon/cs685_s21/</u>

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

Feedback

- Comment complaining non-neural content is "outdated"
 - Sorry I disagree! As you know, this course takes an integrative approach to NLP.

Today

- Hidden Markov model, continued
 - HMM as LM: forward algo, neural HMM
 - HMMs vs RNNs
- Viterbi decoding HMM as sequence labeler
- Conditional random fields discriminative HMM

HMM forward inference $p(\mathbf{w}, \mathbf{y}) = \prod_{t} p(y_t \mid y_{t-1}) p(w_t \mid y_t)$ whole-sentence scoring $\bullet P(W_1 W_T) /$ P(wt | w1...wt-1) next-word prediction $= \sum_{y \in P(w_{t}, y_{t})} W_{t} \cdots W_{t-1}$ P(yr=-, y+-1/Wr.N+1) W.E. V.E 5 -...){-.] DAL W1-- 24-() ×4-1) WE HE W 5 chite. Upła

Update offer hours online find do tar rext-word prediction $= \leq P(w_{\ell} | y_{\ell}, W_{l} \cdots W_{\ell-l}) P(y_{\ell} | w_{l} \cdots w_{\ell-l})$ Jf recursively deply = Rwe(ye) by covel. Mep. $= \alpha_{t} [y_{t}]$ agrimpton Emission Pob

Unsup. HMM for LM

- First-order HMM with thousands of states, and neural nets for transition & emission probs; block structure for inference efficiency
- Inference: forward algo for next-word prediction
- Learning: gradient of log marginal probability, log p(x) (alternative or related to EM; see their EMNLP 2018 tutorial, sec 5)

$$p(\mathbf{x}, \mathbf{z}; \theta) = \prod_{t=1}^{T} p(x_t \mid z_t) p(z_t \mid z_{t-1}).$$
(1)

Our parameterization uses an embedding for each state in \mathcal{Z} ($\mathbf{E}_z \in \mathbb{R}^{|\mathcal{Z}| \times h}$) and each token in \mathcal{X} ($\mathbf{E}_x \in \mathbb{R}^{|\mathcal{X}| \times h}$). From these we can create representations for leaving and entering a state, as well as emitting a word:

$$\mathbf{H}_{\text{out}}, \mathbf{H}_{\text{in}}, \mathbf{H}_{\text{emit}} = \text{MLP}(\mathbf{E}_z)$$

with all in $\mathbb{R}^{|\mathcal{Z}| \times h}$. The HMM distributional parameters are then computed as,⁴

 $\mathbf{O} \propto \exp(\mathbf{H}_{\text{emit}}\mathbf{E}_{x}^{\top}) \qquad \mathbf{A} \propto \exp(\mathbf{H}_{\text{in}}\mathbf{H}_{\text{out}}^{\top})$

Figure 1: The emission matrix as a set of blocks O_1, \ldots, O_4 with fixed number of states k. The columns of each block may vary, as there is no constraint on the number of words a state can emit. Each non-zero cell is constructed from an MLP applied to word E_x and state E_z embeddings.

Model	Param	Val	Test
Penn Treebank			
KN 5-gram	2M	-	141.2
AWD-LSTM	24M	60.0	57.3
256 FF 5-gram	2.9M	159.9	152.0
2x256 dim LSTM	3.6M	93.6	88.8
HMM+RNN	10M	142.3	<u> </u>
\mathcal{E} HMM $ \mathcal{Z} = 900$	10M	284.6	_
VL-HMM $ \mathcal{Z} = 2^{15}$	11.4M	125.0	116.0
WIKITEXT			
KN 5-gram	5.7M	248.7	234.3
AWD-LSTM	33M	68.6	65.8
256 FF 5-gram	8.8M	210.9	195.0
2x256 LSTM	9.6M	124.5	117.5
VL-HMM $ \mathcal{Z} = 2^{15}$	17.3M	166.6	158.2

Table 1: Perplexities on PTB / WIKITEXT-2. The HMM+RNN and HMM of Buys et al. (2018) reported validation perplexity only for PTB.

Figure 3: Perplexity on PTB by state size $|\mathcal{Z}|$ ($\lambda = 0.5$ and M = 128).

Are they related? 2 37 77 Prob. graph НММ RNN The RK State y EZI--K3 Repr ó Inference () conflot Infrance: uncertainty our which state is at t $P(J \in [N_1 \dots N_{4-1}) \in S(K) \subset \mathbb{R}^{K}$ the SANC TAB Jedummeter P(ye(N, ... 24) Q(Tith WI....WE) = detrim.

Viterbi algorithm

 Goal: given entire input sequence w₁..w_T, jointly predict best output sequence y₁..y_T

Why can't you do simply do this left-to-right?

 $P(\overline{y}(\overline{w}) \land P(\overline{w}, \overline{y}))$ A--- DO Left-to-right "greety" WW decoder JET VERBNOUL? VERBNOUL? W2= at

How to build a POS tagger?

- Sources of information:
 - POS tags of surrounding words: syntactic context
 - The word itself
 - Features, etc.!
 - Word-internal information
 - Features from surrounding words
 - External lexicons
 - Embeddings, NN states

← HMM ← CRF ← Classifier

[BERT/ELMO may be sufficient alternatives to sharing contextual information?]

- Seq. labeling as log-linear structured prediction $\hat{y}_{1:M} = \underset{\boldsymbol{y}_{1:M} \in \mathcal{Y}(\boldsymbol{w}_{1:M})}{\operatorname{argmax}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}_{1:M}, \boldsymbol{y}_{1:M}),$
- Example: the **Hidden Markov model**

$$p(\mathbf{w}, \mathbf{y}) = \prod_{t} p(y_t \mid y_{t-1}) p(w_t \mid y_t)$$

- w: Text Data
- y: Proposed class or sequence
- θ: Feature weights (model parameters)
- f(x,y): Feature extractor, produces feature vector

HMM as log-linear

$$p(y,w) = \prod_{t} p(w_{y}|y_{t}) p(y_{t}|y_{t-1})$$

$$p(y,w) = \sum_{t} \log p(w_{t}|y_{t}) + \log p(y_{t}|y_{t-1})$$

$$p(y,w) = \sum_{t} \log p(w_{t}|y_{t}) + \log p(y_{t}|y_{t-1})$$

$$f(y)$$

$$p(y,w) = \sum_{t} \varphi_{t}(y_{t-1},y_{t})$$

Decoding problem $\arg \max_{\substack{y^* \in outputs(x)}} G(y^*)$ (Viterbi algorithm)

HMM as log-linear

• HMM as a joint log-linear model

$$P(y,w) = \prod_{t} P(y_t \mid y_{t-1}) P(w_t \mid y_t)$$
$$P(y,w) = \exp(\theta^{\mathsf{T}} f(y,w))$$
$$f(y,w) = \sum_{t} f(y_{t-1}, y_t, w_t) \quad \text{Local feal}_{(\text{Allows efficients})}$$

e.g. {(N,V):1, (V,dog):1} What are the weights? Local features only! (Allows efficient inference)

• This implies the conditional is also log-linear $P(y \mid w) \propto \exp(\theta^{\mathsf{T}} f(y, w))$

From HMMs to CRFs

- **I. Discriminative learning**: take HMM features, but set weights to maximize *conditional LL* of labels
- **2. More features**: affix, positional, feature templates, embeddings, etc.
 - For efficient inference: make sure to **preserve Markovian structure** within the feature function (e.g. first-order CRF)

		finna	bless	us
y =	[S]	V	V	v

Tags: "**V**"erb and pr"**O**"noun (and **[S]**tart) Let's use three feature templates:

Transition features: for example $f_{VV}(x,y) =$ number of V-V transitions in y	Word-tag observation features: for example $f_{V,dog}(x,y) =$ number of tokens that are word "dog" under a Verb tag	"ends with s"-tag features: $f_{V-S}(x,y) =$ number of tokens that end with -s and are tagged as Verb
--	---	--

(Global features have to be COUNTS: the reason why is further below.) For 3 word vocabulary and 2 tag types, that's J=14 total features. Assume we have fixed model weights θ and would like to score the goodness of the above tag sequence.

Global feature vector is from the sum of local feature vectors

$$f(x,y) = \sum_{t} f_t(y_{t-1}, y_t, x_t)$$

 $f_t(y_{t-1}, y_t, x_t) =$ local feature vector including the transition between these two tags, and the observation of word at position t.

The local features are, for example:

 f_{VV} (yprev, ycur, curword) = {1 if yprev=V and ycur=V, else 0}

 $f_{V,dog}(yprev, ycur, curword) = \{1 \text{ if } ycur=V \text{ and } curword="dog", else 0\}$

 $f_{V,-s}$ (yprev, ycur, curword) = {1 if ycur=V and curword ends in "s", else 0}

And so on, repeated for different tags and words.

Local feature decomposition implies that the scoring function decomposes, too.

Learning a CRF

- Gradient descent on negative **conditional LL**
 - Log-linear gradient: sum over all possible predicted structures (Forward-Backward for marginalization)
- Non-probabilistic losses: compare gold structure to only one predicted structure
 - Structured perceptron algorithm: Collins, 2002 (recent Test of Time award)
 - Structured SVM (hinge loss)
 - (Viterbi for best-structure)

Learning a CRF: max CLL

$$\log p_{\theta}(y \mid w) = \theta^{\mathsf{T}} f(y, w) - \log \sum_{y'} \exp(\theta^{\mathsf{T}} f(y, w))$$
$$\frac{\partial \log p_{\theta}(...)}{\partial \theta_{j}} = f_{j}(y, w) - \sum_{y'} p_{\theta}(y' \mid w) f_{j}(y', w)$$

• Apply local decomposition
=
$$\left(\sum_{t} f_j(y_{t-1}, y_t, w_t)\right) - \sum_{y'} p_{\theta}(y' \mid w) \sum_{t} f_j(y'_{t-1}, y'_t, w_t)$$

 $= \sum_{t} \left(f_{j}(y_{t-1}, y_{t}, w_{t}) - \sum_{y'_{t}, y'_{t-1}} p_{\theta}(y'_{t-1}, y'_{t} \mid w) f_{j}(y'_{t-1}, y'_{t}, w_{t}) \right)$

Tag marginals (to compute: forward-backward)

Seq. Labeling inference

- P(w): Likelihood (generative model)
 - Forward algorithm. Each step: sum over all possible prefixes
- P(y | w): Predicted sequence ("decoding")
 - Viterbi algorithm. Each step: consider each best possible prefix
 - Need for supervised struct perceptron / SSVM learning
- P(y_m | w) and P(y_m, y_{m-1} | w):
 Predicted tag (and tag pair) marginals
 - Forward-Backward algorithm
 - Need for **supervised CRF** learning
 - Need for **unsupervised HMM** learning

Forward-Backward

Want: a pair marginal $\Pr(Y_{m-1} = k', Y_m = k \mid \boldsymbol{w}) = \frac{\sum_{\boldsymbol{y}: Y_m = k, Y_{m-1} = k'} \prod_{n=1}^{M} \exp s_n(y_n, y_{n-1})}{\sum_{\boldsymbol{y}'} \prod_{n=1}^{M} \exp s_n(y'_n, y'_{n-1})}.$

Figure 7.3: A schematic illustration of the computation of the marginal probability $Pr(Y_{m-1} = k', Y_m = k)$, using the forward score $\alpha_{m-1}(k')$ and the backward score $\beta_m(k)$.

Forward recurrence

$$\alpha_m(y_m) = \sum_{y_{1:m-1}} \prod_{n=1}^m \exp s_n(y_n, y_{n-1})$$

= $\sum_{y_{m-1}} (\exp s_m(y_m, y_{m-1})) \sum_{y_{1:m-2}} \prod_{n=1}^{m-1} \exp s_n(y_n, y_{n-1})$
= $\sum_{y_{m-1}} (\exp s_m(y_m, y_{m-1})) \times \alpha_{m-1}(y_{m-1}).$

Backward recurrence
$$M+1$$

 $\beta_m(k) \triangleq \sum_{\boldsymbol{y}_{m:M}:Y_m=k} \prod_{n=m}^{M+1} \exp s_n(y_n, y_{n-1})$
 $= \sum_{k' \in \mathcal{Y}} \exp s_{m+1}(k', k) \times \beta_{m+1}(k').$

Baum-Welch: EM for HMMs

- When complete LL is easy to maximize, as in the simple count-based HMM
 - It's an optimization method for the marginal LL
 - For linear or NN parameterizations, backprop implicitly does an E-step for you; no need for explicit E/M alternation
- **E-step**: calculate marginals with forward-backward
 - $p(y_{t-1}, y_t | w_{1}...w_T)$
 - $p(y_t | w_1...w_T)$
- **M-step**: re-estimate parameters from expected counts
 - Transitions: will use pair marginals
 - Emissions: will use tag marginals
- Learns soft clusters kind-of-like POS tags

Structured Perceptron

- Viterbi is very common for decoding. Inconvenient that you also need forwardbackward for CRF learning
- Collins 2002: actually you can directly train only using Viterbi: **structured perceptron**
 - Theoretical results hold from the usual perceptron...
- Important extension in NLP: **Structured SVM**
 - a.k.a. Structured large-margin/hinge-loss energy network a.k.a. Cost-augmented perceptron
- SP, SSVM, CRF training are variants of highly related objective functions and SSGD updates

Structured/multiclass Perceptron (for any log-linear model)

- For ~10 iterations
 - For each (x,y) in dataset
 - PREDICT

$$y^* = \arg\max_{y'} \theta^\mathsf{T} f(x, y')$$

• IF y=y*, do nothing

Does this look similar to the CRF CLL gradient?

Perceptron notes/issues

- Issue: does it converge? (generally no)
 - Solution: the *averaged* perceptron
- Can you regularize it? No... use SSVM instead (cost-augmented perceptron)
- StructPerc and CRF perform similarly in practice

CRF extensions

- Not just chains
 - 2nd-order, 3rd-order Markov assumptions...
 - Trees...
 - Grids, social networks, etc... any situation where you want interdependence of the latent (predicted) variables
 - Best: a low-treewidth DGM (why?)

Structured Pred. and NNs

- Tradeoffs
 Complex output model + simple input model? (CRF and linear features) vs.
 Simple output model + complex input model?
- Indiv. classifier with LSTM "features")
 Can combine both! (e.g. BiLSTM-CRF)
- RNNs as *alternative* to probabilistic model-based message passing
 - Success of BERT representation + indep classifier suggests BERT (or similar) is already combining significant information
- Other work (e.g.VAEs): NNs for inference