
Sequence Labeling/Modeling (II)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing

http://brenocon.com/cs685

https://people.cs.umass.edu/~brenocon/cs685_s21/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

Feedback

• Comment complaining non-neural content is
"outdated"

• Sorry I disagree! As you know, this course takes
an integrative approach to NLP.

2

Today

• Hidden Markov model, continued
• HMM as LM: forward algo, neural HMM
• HMMs vs RNNs

• Viterbi decoding - HMM as sequence labeler
• Conditional random fields - discriminative HMM

3

ff
6

HMM forward inference

• P(w1..wT) whole-sentence scoring
• P(wt | w1..wt-1) next-word prediction

4

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt) iEI
Teaching
YE Nwt It M W

EE.a.x.gl
iuDGHlwmxD

Update after

PATH we I

update offer lecture

online fuddgo far next
word predictor

putty H D

y
p wtfye Wi Wt i PGt M

wt D
e

Pfalye
reeutsidy apply

by and indep
And algo

assuneton At Ye
Emission

prob

Forward algo. as trellis

5

Dynamic

Programming

PE Eje coast 8Gt 5 LIKE time

tighten rate
t I

T

I
l eGibDPGdmDfGd Paralysed

E QG.ly Pandy
z
Ptsda Rudya i i

yitcats

Unsup. HMM for LM
• First-order HMM with thousands of states, and neural nets for

transition & emission probs; block structure for inference efficiency
• Inference: forward algo for next-word prediction
• Learning: gradient of log marginal probability, log p(x)

(alternative or related to EM; see their EMNLP 2018 tutorial, sec 5)

6 [Chiu and Rush 2020]

Figure 1: The emission matrix as a set of blocks
O1, . . . ,O4 with fixed number of states k. The
columns of each block may vary, as there is no con-
straint on the number of words a state can emit. Each
non-zero cell is constructed from an MLP applied to
word Ex and state Ez embeddings.

tion on the HMM emission matrix O. As noted
by Dedieu et al. (2019), restricting the number of
states that can produce each word can improve in-
ference complexity. We utilize a slightly stronger
assumption on the model: a) states are partitioned
into M equal sized groups each of which emit the
same subset of words, and b) each word is only
admitted by one group of k = |Z|/M states which
we indicate as Zx ⇢ Z .

We implement this group structure through a set
of blocked emissions, each corresponding to one
of the M state groups,

O =

2

4
O1 0 0
0 . . . 0
0 0 OM

3

5

where Om 2 Rk⇥|Xm|. Figure 1 shows these emis-
sion blocks. Each block matrix Om gives the prob-
abilities for emitting tokens Xm for states in group
m, i.e. states (m� 1)k through mk.

With this constraint, exact marginalization can
be computed via

p(x) =
X

z12Zx1

p(z1 | z0)p(x1 | z1)⇥

· · ·
X

zT2ZxT

p(zT | zT�1)p(xT | zT)
(3)

Since there are only k states with nonzero probabil-
ity of occurring at every timestep, we only need to
consider transitioning from the |Zxt | = k previous
states to the next |Zxt+1 | = k states, resulting in
O(k2) operations per timestep. This gives a serial
complexity of O(Tk2).3

3This can be sped up on a parallel machine to O(log(T)k2)
via a binary reduction.

Algorithm 1 HMM Training (a single batch)
Given: block structure and model parameters
Sample block-wise dropout mask b
Compute A,O ignoring bz = 0
for all examples x in batch do

Compute log p(x;A,O)
Compute grad wrt parameters of log p(x)

Update model parameters Ez,Ex and MLP

Neural Parameterization A larger state space al-
lows for longer HMM memory, but it also may
require more parameters. Even with blocked emis-
sions, the scalar model parameterization of an
HMM grows as O(|Z|2) due to the transition ma-
trix. A neural parameterization allows us to share
parameters between words and states to capture
common structure.

Our parameterization uses an embedding for
each state in Z (Ez 2 R|Z|⇥h) and each token
in X (Ex 2 R|X |⇥h). From these we can create
representations for leaving and entering a state, as
well as emitting a word:

Hout,Hin,Hemit = MLP(Ez)

with all in R|Z|⇥h. The HMM distributional param-
eters are then computed as,4

O / exp(HemitE
>
x) A / exp(HinH

>
out)

(4)
The MLP architecture follows Kim et al. (2019),
with details in the appendix. This factorized pa-
rameterization, shown in Figure 1, reduces the total
parameters to O(h2 + h|Z|+ h|X |).

Note that parameter computation is independent
of inference and can be cached completely as the
emission and transition matrices, A and O, at test-
time. For the training algorithm, shown in Algo-
rithm 1, we compute A and O once per batch while
RNNs and similar models recompute emissions ev-
ery token.

Dropout as State Reduction Finally, to encour-
age full use of the large state space, we introduce
dropout that prevents the model from favoring spe-
cific states. We propose a form of HMM state
dropout that removes states from use entirely at
each batch, which also has the added benefit of
speeding up inference.

4As an optimization, one could only compute the nonzero
emission matrix blocks saving space and time. In practice we
compute the full matrix as in the equation.

improvements in POS induction with a neural pa-
rameterization of an HMM. They consider small
state spaces, as the goal is tag induction rather than
language modeling.1

Most similar to this work are the large HMM
models of Dedieu et al. (2019). They introduce a
sparsity constraint in order to train a 30K state non-
neural HMM for character-level language model-
ing; however, their constraint precludes application
to large vocabularies. We overcome this limitation
and train models with neural parameterizations on
word-level language modeling.

Finally, another approach for scaling state spaces
is to grow from small to big via a split-merge pro-
cess (Petrov et al., 2006; Huang, 2011). In particu-
lar, Huang (2011) learn an HMM for language mod-
eling via this process. As fixed-size state spaces
are amenable to batching on modern hardware, we
leave split-merge procedures for future work.

3 Background: HMMs

We are interested in learning a distribution over ob-
served tokens x = hx1, . . . , xT i, with each token
xt an element of the finite vocabulary X . Hid-
den Markov models (HMMs) specify a joint distri-
bution over observed tokens x and discrete latent
states z = hz1, . . . , zT i, with each zt from the fi-
nite set Z . For notational convenience, we define
the starting state z0 = ✏. This yields the joint dis-
tribution,

p(x, z; ✓) =
TY

t=1

p(xt | zt)p(zt | zt�1). (1)

We refer to the transition and emission matrices as
the distributional parameters of the HMM. Specif-
ically, let A 2 [0, 1]|Z|⇥|Z| be the transition prob-
abilities and O 2 [0, 1]|Z|⇥|X | the emission proba-
bilities,

p(zt | zt�1) = Azt�1zt p(xt | zt) = Oztxt . (2)

We distinguish between two types of model
parameterizations: scalar and neural, where the
model parameters are given by ✓. A scalar param-
eterization sets the model parameters equal to the
distributional parameters, so that ✓ = {A,O}, re-
sulting in O(|Z|2 + |Z||X |) model parameters. A

1Other work has used neural parameterization for struc-
tured models, such as dependency models (Han et al., 2017),
hidden semi-Markov models (Wiseman et al., 2018), and con-
text free grammars (Kim et al., 2019).

neural parameterization instead generates the dis-
tributional parameters from a neural network (with
parameters ✓), decoupling the size of ✓ from A,O.
This decoupling gives us the ability to choose be-
tween compact or overparameterized ✓ (relative to
A,O). As we scale to large state spaces, we take
advantage of compact neural parameterizations.

In order to fit an HMM to data x, we must
marginalize over the latent states to obtain the like-
lihood p(x) =

P
z p(x, z). This sum can be com-

puted in time O(T |Z|2) via the forward algorithm,
which becomes prohibitive if the number of latent
states |Z| is large. We can then optimize the likeli-
hood with gradient ascent (or alternative variants
of expectation maximization).
HMMs and RNNs Although the forward algo-
rithm resembles that of the forward pass in a re-
current neural network (RNN) (Buys et al., 2018),
there are key representational differences. RNNs
do not decouple the latent dynamics from the ob-
served. This often leads to improved accuracy,
but precludes posterior inference which is useful
for interpretability. A further benefit of HMMs
over RNNs is that their associative structure allows
for parallel inference via the prefix-sum algorithm
(Ladner and Fischer, 1980).2 Finally, HMMs bot-
tleneck information from every timestep through
a discrete hidden state. NLP has a long history
of utilizing discrete representations, and discrete
representations may yield interesting results. For
example, recent work has found that discrete latent
variables work well in low-resource regimes (Jin
et al., 2020).

4 Scaling HMMs

We propose three extensions to scale HMMs for bet-
ter language modeling performance: blocked emis-
sions, which allow for very large models; neural
parameterization, which makes it easy for states to
share model parameters; and state dropout, which
encourages broader state usage.

Blocked Emissions Our main goal is to apply a
HMM with a large number of hidden states to learn
the underlying dynamics of language data. How-
ever, the O(T |Z|2) complexity of marginal infer-
ence practically limits the number of HMM states.
We can get around this limit by making an assump-

2Quasi-RNNs (Bradbury et al., 2016) also have a (parallel)
logarithmic dependency on T by applying the same prefix-sum
trick, but do not model uncertainty over latent dynamics.

Ez

Ex

O1

O2

O3

O4

Figure 1: The emission matrix as a set of blocks
O1, . . . ,O4 with fixed number of states k. The
columns of each block may vary, as there is no con-
straint on the number of words a state can emit. Each
non-zero cell is constructed from an MLP applied to
word Ex and state Ez embeddings.

tion on the HMM emission matrix O. As noted
by Dedieu et al. (2019), restricting the number of
states that can produce each word can improve in-
ference complexity. We utilize a slightly stronger
assumption on the model: a) states are partitioned
into M equal sized groups each of which emit the
same subset of words, and b) each word is only
admitted by one group of k = |Z|/M states which
we indicate as Zx ⇢ Z .

We implement this group structure through a set
of blocked emissions, each corresponding to one
of the M state groups,

O =

2

4
O1 0 0
0 . . . 0
0 0 OM

3

5

where Om 2 Rk⇥|Xm|. Figure 1 shows these emis-
sion blocks. Each block matrix Om gives the prob-
abilities for emitting tokens Xm for states in group
m, i.e. states (m� 1)k through mk.

With this constraint, exact marginalization can
be computed via

p(x) =
X

z12Zx1

p(z1 | z0)p(x1 | z1)⇥

· · ·
X

zT2ZxT

p(zT | zT�1)p(xT | zT)
(3)

Since there are only k states with nonzero probabil-
ity of occurring at every timestep, we only need to
consider transitioning from the |Zxt | = k previous
states to the next |Zxt+1 | = k states, resulting in
O(k2) operations per timestep. This gives a serial
complexity of O(Tk2).3

3This can be sped up on a parallel machine to O(log(T)k2)
via a binary reduction.

Algorithm 1 HMM Training (a single batch)
Given: block structure and model parameters
Sample block-wise dropout mask b
Compute A,O ignoring bz = 0
for all examples x in batch do

Compute log p(x;A,O)
Compute grad wrt parameters of log p(x)

Update model parameters Ez,Ex and MLP

Neural Parameterization A larger state space al-
lows for longer HMM memory, but it also may
require more parameters. Even with blocked emis-
sions, the scalar model parameterization of an
HMM grows as O(|Z|2) due to the transition ma-
trix. A neural parameterization allows us to share
parameters between words and states to capture
common structure.

Our parameterization uses an embedding for
each state in Z (Ez 2 R|Z|⇥h) and each token
in X (Ex 2 R|X |⇥h). From these we can create
representations for leaving and entering a state, as
well as emitting a word:

Hout,Hin,Hemit = MLP(Ez)

with all in R|Z|⇥h. The HMM distributional param-
eters are then computed as,4

O / exp(HemitE
>
x) A / exp(HinH

>
out)

(4)
The MLP architecture follows Kim et al. (2019),
with details in the appendix. This factorized pa-
rameterization, shown in Figure 1, reduces the total
parameters to O(h2 + h|Z|+ h|X |).

Note that parameter computation is independent
of inference and can be cached completely as the
emission and transition matrices, A and O, at test-
time. For the training algorithm, shown in Algo-
rithm 1, we compute A and O once per batch while
RNNs and similar models recompute emissions ev-
ery token.

Dropout as State Reduction Finally, to encour-
age full use of the large state space, we introduce
dropout that prevents the model from favoring spe-
cific states. We propose a form of HMM state
dropout that removes states from use entirely at
each batch, which also has the added benefit of
speeding up inference.

4As an optimization, one could only compute the nonzero
emission matrix blocks saving space and time. In practice we
compute the full matrix as in the equation.

rg__

e
as

e

Is a to

teddy

7

Model Param Val Test

PENN TREEBANK

KN 5-gram 2M - 141.2
AWD-LSTM 24M 60.0 57.3
256 FF 5-gram 2.9M 159.9 152.0
2x256 dim LSTM 3.6M 93.6 88.8
HMM+RNN 10M 142.3 -
HMM |Z| = 900 10M 284.6 -
VL-HMM |Z| = 215 11.4M 125.0 116.0

WIKITEXT

KN 5-gram 5.7M 248.7 234.3
AWD-LSTM 33M 68.6 65.8
256 FF 5-gram 8.8M 210.9 195.0
2x256 LSTM 9.6M 124.5 117.5
VL-HMM |Z| = 215 17.3M 166.6 158.2

Table 1: Perplexities on PTB / WIKITEXT-2. The
HMM+RNN and HMM of Buys et al. (2018) reported
validation perplexity only for PTB.

6 Results

Table 1 gives the main results. On PTB, the VL-
HMM is able to achieve 125.0 perplexity on the
valid set, outperforming a FF baseline (159.9) and
vastly outperforming the 900-state HMM from
Buys et al. (2018) (284.6).6 The VL-HMM also
outperforms the HMM+RNN extension of Buys
et al. (2018) (142.3). These results indicate that
HMMs are a much stronger model on this bench-
mark than previously claimed. However, the VL-
HMM is still outperformed by LSTMs which have
been extensively studied for this task. This trend
persists in WIKITEXT-2, with the VL-HMM out-
performing the FF model but underperforming an
LSTM.

Figure 3 examines the effect of state size: We
find that performance continuously improves sig-
nificantly as we grow to 216 states, justifying the
large state space. The marginal improvement does
lower as the number of states increases, implying
that the current approach may have limitations in
scaling to even larger state spaces.

Table 2 considers other ablations: Although neu-
ral and scalar parameterizations reach similar train-
ing perplexity, the neural model generalizes better
on validation with almost 100x fewer model pa-
rameters. We find that state dropout results in both

6Buys et al. (2018) only report validation perplexity for the
HMM and HMM+RNN models, so we compare accordingly.

210 211 212 213 214 215 216

150

200

|Z|

PP
L

Figure 3: Perplexity on PTB by state size |Z| (� = 0.5
and M = 128).

Model Param Train Val Time

VL-HMM (214) 7.2M 115 134 40
- neural param 423M 119 169 14
- state dropout 7.2M 88 157 100

Table 2: Ablations on PTB (� = 0.5 and M = 128)
with a smaller model |Z| = 214. Time is ms per
eval batch (Run on RTX 2080). Ablations were per-
formed independently, removing a single component
per row. Removing the neural parameterization results
in a scalar parameterization.

an improvement in perplexity and a large improve-
ment in computational speed. See the appendix
for emission sparsity constraint ablations, as well
as experiments on further reducing the number of
parameters.

7 Conclusion

This work demonstrates methods for effectively
scaling HMMs to large state spaces on parallel
hardware, and shows that this approach results in
accuracy gains compared to other HMM models.
In order to scale, we introduce three techniques: a
blocked emission constraint, a neural parameteri-
zation, and state dropout, which lead to an HMM
that outperforms n-gram models and prior HMMs.
Once scaled up to take advantage of modern hard-
ware, very large HMMs demonstrate meaningful
improvements over smaller HMMs. HMMs are
a useful class of probabilistic models with differ-
ent inductive biases, performance characteristics,
and conditional independence structure than RNNs.
Future work includes using these approaches to
induce model structure, develop accurate models
with better interpretability, and to apply these ap-
proaches in lower data regimes.

Model Param Val Test

PENN TREEBANK

KN 5-gram 2M - 141.2
AWD-LSTM 24M 60.0 57.3
256 FF 5-gram 2.9M 159.9 152.0
2x256 dim LSTM 3.6M 93.6 88.8
HMM+RNN 10M 142.3 -
HMM |Z| = 900 10M 284.6 -
VL-HMM |Z| = 215 11.4M 125.0 116.0

WIKITEXT

KN 5-gram 5.7M 248.7 234.3
AWD-LSTM 33M 68.6 65.8
256 FF 5-gram 8.8M 210.9 195.0
2x256 LSTM 9.6M 124.5 117.5
VL-HMM |Z| = 215 17.3M 166.6 158.2

Table 1: Perplexities on PTB / WIKITEXT-2. The
HMM+RNN and HMM of Buys et al. (2018) reported
validation perplexity only for PTB.

6 Results

Table 1 gives the main results. On PTB, the VL-
HMM is able to achieve 125.0 perplexity on the
valid set, outperforming a FF baseline (159.9) and
vastly outperforming the 900-state HMM from
Buys et al. (2018) (284.6).6 The VL-HMM also
outperforms the HMM+RNN extension of Buys
et al. (2018) (142.3). These results indicate that
HMMs are a much stronger model on this bench-
mark than previously claimed. However, the VL-
HMM is still outperformed by LSTMs which have
been extensively studied for this task. This trend
persists in WIKITEXT-2, with the VL-HMM out-
performing the FF model but underperforming an
LSTM.

Figure 3 examines the effect of state size: We
find that performance continuously improves sig-
nificantly as we grow to 216 states, justifying the
large state space. The marginal improvement does
lower as the number of states increases, implying
that the current approach may have limitations in
scaling to even larger state spaces.

Table 2 considers other ablations: Although neu-
ral and scalar parameterizations reach similar train-
ing perplexity, the neural model generalizes better
on validation with almost 100x fewer model pa-
rameters. We find that state dropout results in both

6Buys et al. (2018) only report validation perplexity for the
HMM and HMM+RNN models, so we compare accordingly.

210 211 212 213 214 215 216

150

200

|Z|

PP
L

Figure 3: Perplexity on PTB by state size |Z| (� = 0.5
and M = 128).

Model Param Train Val Time

VL-HMM (214) 7.2M 115 134 40
- neural param 423M 119 169 14
- state dropout 7.2M 88 157 100

Table 2: Ablations on PTB (� = 0.5 and M = 128)
with a smaller model |Z| = 214. Time is ms per
eval batch (Run on RTX 2080). Ablations were per-
formed independently, removing a single component
per row. Removing the neural parameterization results
in a scalar parameterization.

an improvement in perplexity and a large improve-
ment in computational speed. See the appendix
for emission sparsity constraint ablations, as well
as experiments on further reducing the number of
parameters.

7 Conclusion

This work demonstrates methods for effectively
scaling HMMs to large state spaces on parallel
hardware, and shows that this approach results in
accuracy gains compared to other HMM models.
In order to scale, we introduce three techniques: a
blocked emission constraint, a neural parameteri-
zation, and state dropout, which lead to an HMM
that outperforms n-gram models and prior HMMs.
Once scaled up to take advantage of modern hard-
ware, very large HMMs demonstrate meaningful
improvements over smaller HMMs. HMMs are
a useful class of probabilistic models with differ-
ent inductive biases, performance characteristics,
and conditional independence structure than RNNs.
Future work includes using these approaches to
induce model structure, develop accurate models
with better interpretability, and to apply these ap-
proaches in lower data regimes.

E i S
DO

Are they related?

8

HMM RNN

Kuda
Complots

75 7,74mm IT't t
StateState

peer y c El ok Beer It Rkh

Insane
vneutgntgawnhrhstdetsattmppenfz.am.fated

pfgtlm.intD thesame

14 14 my
TIKKA

RB dekmmrtr

PChtfwa.int
detum

Viterbi algorithm
• Goal: given entire input sequence w1..wT, jointly predict best

output sequence y1..yT
• Why can't you do simply do this left-to-right?

9

A
a

fairfax PCFlwKPE.SI
Too

fq y
A left to right

greedy

w w deader

yE VERBvooED yz
pREP

WE Attack neat

How to build a POS tagger?

• Sources of information:

• POS tags of surrounding words:
syntactic context

• The word itself

• Features, etc.!

• Word-internal information

• Features from surrounding words

• External lexicons

• Embeddings, NN states

10

HMM

Classifier

CRF

[BERT/ELMO may be sufficient alternatives to sharing contextual information?]

11

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w1:M = (w1, w2, . . . , wM), there is a set of possible taggings Y(w1:M) =

Y
M , where Y = {N, V, D, . . .} refers to the set of individual tags, and Y

M refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w1:M),

ŷ1:M = argmax

y1:M2Y(w1:M)
✓>f(w1:M ,y1:M), (6.7)

where y1:M = (y1, y2, . . . , yM) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y1:M . Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w1, . . . , wM ,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w1:M)| ⇡ 10

20, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, ym, m), (6.8)

where we use the shorthand w , w1:M . The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Example: the Hidden Markov model

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

• w: Text Data

• y: Proposed class or sequence

• θ: Feature weights (model parameters)

• f(x,y): Feature extractor, produces feature vector

12

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w1:M = (w1, w2, . . . , wM), there is a set of possible taggings Y(w1:M) =

Y
M , where Y = {N, V, D, . . .} refers to the set of individual tags, and Y

M refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w1:M),

ŷ1:M = argmax

y1:M2Y(w1:M)
✓>f(w1:M ,y1:M), (6.7)

where y1:M = (y1, y2, . . . , yM) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y1:M . Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w1, . . . , wM ,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w1:M)| ⇡ 10

20, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, ym, m), (6.8)

where we use the shorthand w , w1:M . The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Example: the Hidden Markov model

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

• Next: Conditional Random Fields

p(y | w) =
exp(✓Tf(w1:M ,y1:M))P

y0
1:M2Y(w1:M) exp(✓

Tf(w1:M ,y0
1:M))

* for carefully chosen f

S

13

A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission factor score transition factor score

Decoding problem
(Viterbi algorithm)

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

arg max
y⇤2outputs(x)

G(y⇤)

HMM as log-linear

p(y, w) =
Y

t

p(wy|yt) p(yt|yt�1)

pair factor score

A(yt�1, yt)

log p(y, w) =
X

t

�t(yt�1, yt)

s eat

os

HMM as log-linear

• HMM as a joint log-linear model

14

P (y, w) =
Y

t

P (yt | yt�1)P (wt | yt)

P (y | w) / exp(✓Tf(y, w))

f(y, w) =
X

t

f(yt�1, yt, wt)

• This implies the conditional is also log-linear

Local features only!
(Allows efficient inference)

P (y, w) = exp(✓Tf(y, w))

e.g. {(N,V):1, (V,dog):1}
What are the weights?

From HMMs to CRFs

• 1. Discriminative learning: take HMM
features, but set weights to maximize
conditional LL of labels

• 2. More features: affix, positional, feature
templates, embeddings, etc.

• For efficient inference: make sure to preserve
Markovian structure within the feature
function (e.g. first-order CRF)

15

16

finna bless us

Let’s use three feature templates:
Tags: "V"erb and pr"O"noun (and [S]tart)

y = V V V

Global feature vector f(x,y) =

Transition features:
for example
fVV(x,y) = number of
V-V transitions in y

Word-tag observation
features: for example
fV,dog(x,y) = number of
tokens that are word “dog”
under a Verb tag

“ends with s”–tag features:
fV-s(x,y) = number of
tokens that end with -s and
are tagged as Verb

Model parameters θ =

(Global features have to be COUNTS: the reason why is further below.)
For 3 word vocabulary and 2 tag types, that’s J=14 total features.
Assume we have fixed model weights θ and would like to score the goodness of
the above tag sequence.

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1

= ✓0f(x, y) =
JX

j=1

✓jfj(x, y)

f VV f V,-
s

f O,
fin

na

f V,b
les

s

f OOf VO f O,
ble

ss

f V,fi
nn

a

f O,
us

f V,u
s

f O,
-s

f OV

Goodness score G(y)

= –0.2 + 0 + 0.2 +0 +0 +0 –1.2 + 0 +0.1 +5.3 +0 +0 +2.2 + 0

f SV f SO

[S]

-0.2 -0.8

θ SV θ SO θ VV θ V,-
s

θ O,
fin

na

θ V,b
les

s

θ OOθ VO θ O,
ble

ss

θ V,fi
nn

a

θ O,
us

θ V,u
s

θ O,
-s

θ OV

00 1 0 2 002 110 01 0

17

Global feature vector is from the sum of local feature vectors
f(x, y) =

X

t

ft(yt�1, yt, xt)

local feature vector including the transition between these two tags,
and the observation of word at position t.

ft(yt�1, yt, xt) =

The local features are, for example:
fVV(yprev, ycur, curword) = {1 if yprev=V and ycur=V, else 0}

fV,dog(yprev, ycur, curword) = {1 if ycur=V and curword=“dog”, else 0}

fV,-s(yprev, ycur, curword) = {1 if ycur=V and curword ends in “s”, else 0}

And so on, repeated for different tags and words.

18

Example

 = f(x=finna bless us, y=V V V) =

f(START, V, finna)
+ f(V, V, bless)

+ f(V, V, us)

f VV f V,-
s

f O,
fin

na

f V,b
les

s

f OOf VO f O,
ble

ss

f V,fi
nn

a

f O,
us

f V,u
s

f O,
-s

f OVf SV f SO

00 1 0 2 002 110 01 0

00 1 0 0 000 000 01 0

00 0 0 1 001 010 00 0

00 0 0 1 001 100 00 0

Local feature decomposition implies that the scoring function decomposes, too.

G(y) = ✓0f(x, y) = ✓0
X

t

ft(yt�1, yt, xt) =
X

t

✓0ft(yt�1, yt, xt)

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

00 1 0 0 000 000 01 0

00 0 0 1 001 010 00 0

00 0 0 1 001 100 00 0

dotprod)
-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

(

dotprod (

dotprod (

+

+

)

)

= θ'f(START, V, finna) + θ'f(V, V, bless) + θ’f(V, V, us)

=

……………obs. feats…………….…..…trans. feats………

• Gradient descent on negative conditional LL
• Log-linear gradient:

sum over all possible predicted structures
(Forward-Backward for marginalization)

• Non-probabilistic losses: compare gold structure
to only one predicted structure

• Structured perceptron algorithm:
Collins, 2002 (recent Test of Time award)

• Structured SVM (hinge loss)

• (Viterbi for best-structure)

19

Learning a CRF

Learning a CRF: max CLL

=
X

t

0

@fj(yt�1, yt, wt)�
X

y0
t,y

0
t�1

p✓(y
0
t�1, y

0
t | w)fj(y0t�1, y

0
t, wt)

1

A

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log
X

y0

exp(✓Tf(y, w))

Real feature value Expected feature value

Tag marginals (to compute: forward-backward)

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Seq. Labeling inference
• P(w): Likelihood (generative model)

• Forward algorithm. Each step: sum over all possible prefixes

• P(y | w): Predicted sequence (“decoding”)

• Viterbi algorithm. Each step: consider each best possible prefix

• Need for supervised struct perceptron / SSVM
learning

• P(ym | w) and P(ym, ym-1 | w):
Predicted tag (and tag pair) marginals

• Forward-Backward algorithm

• Need for supervised CRF learning

• Need for unsupervised HMM learning

21

Forward-Backward

22

166 CHAPTER 7. SEQUENCE LABELING

Ym�1 = k
0

Ym = k

↵m�1(k0) exp sm(k, k0) �m(k)

Figure 7.3: A schematic illustration of the computation of the marginal probability
Pr(Ym�1 = k0, Ym = k), using the forward score ↵m�1(k0) and the backward score �m(k).

transition (Ym�1 = k0) ! (Ym = k); and the suffixes ym:M , beginning with the tag Ym = k:

X

y:Ym=k,Ym�1=k0

MY

n=1

exp sn(yn, yn�1) =
X

y1:m�1:Ym�1=k0

m�1Y

n=1

exp sn(yn, yn�1)

⇥ exp sm(k, k0)

⇥

X

ym:M :Ym=k

M+1Y

n=m+1

exp sn(yn, yn�1). [7.87]

The result is product of three terms: a score that sums over all the ways to get to the
position (Ym�1 = k0), a score for the transition from k0 to k, and a score that sums over
all the ways of finishing the sequence from (Ym = k). The first term of Equation 7.87 is
equal to the forward variable, ↵m�1(k0). The third term — the sum over ways to finish the
sequence — can also be defined recursively, this time moving over the trellis from right to
left, which is known as the backward recurrence:

�m(k) ,
X

ym:M :Ym=k

M+1Y

n=m

exp sn(yn, yn�1) [7.88]

=
X

k02Y
exp sm+1(k

0, k)
X

ym+1:M :Ym=k0

M+1Y

n=m+1

exp sn(yn, yn�1) [7.89]

=
X

k02Y
exp sm+1(k

0, k) ⇥ �m+1(k
0). [7.90]

To understand this computation, compare with the forward recurrence in Equation 7.81.

Jacob Eisenstein. Draft of November 13, 2018.

7.5. DISCRIMINATIVE SEQUENCE LABELING WITH FEATURES 165

The conditional log-likelihood can be rewritten,

` =
�

2
||✓||

2
�

NX

i=1

✓ · f(w(i),y(i)) + log↵M+1(⌥). [7.84]

Probabilistic programming environments, such as TORCH (Collobert et al., 2011) and
DYNET (Neubig et al., 2017), can compute the gradient of this objective using automatic
differentiation. The programmer need only implement the forward algorithm as a com-
putation graph.

As in logistic regression, the gradient of the likelihood with respect to the parameters
is a difference between observed and expected feature counts:

d`

d✓j
=�✓j +

NX

i=1

E[fj(w
(i),y)] � fj(w

(i),y(i)), [7.85]

where fj(w(i),y(i)) refers to the count of feature j for token sequence w(i) and tag se-
quence y(i). The expected feature counts are computed “under the hood” when automatic
differentiation is applied to Equation 7.84 (Eisner, 2016).

Before the widespread use of automatic differentiation, it was common to compute
the feature expectations from marginal tag probabilities p(ym | w). These marginal prob-
abilities are sometimes useful on their own, and can be computed using the forward-
backward algorithm. This algorithm combines the forward recurrence with an equivalent
backward recurrence, which traverses the input from wM back to w1.

*Forward-backward algorithm

Marginal probabilities over tag bigrams can be written as,10

Pr(Ym�1 = k0, Ym = k | w) =

P
y:Ym=k,Ym�1=k0

Q
M

n=1 exp sn(yn, yn�1)
P

y0
Q

M

n=1 exp sn(y0n, y
0
n�1)

. [7.86]

The numerator sums over all tag sequences that include the transition (Ym�1 = k0) !

(Ym = k). Because we are only interested in sequences that include the tag bigram, this
sum can be decomposed into three parts: the prefixes y1:m�1, terminating in Ym�1 = k0; the

10Recall the notational convention of upper-case letters for random variables, e.g. Ym, and lower case
letters for specific values, e.g., ym, so that Ym = k is interpreted as the event of random variable Ym taking
the value k.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Want: a pair marginal

To get: sum out left/right-side paths

[Diagram: Jacob Eisenstein]

23

164 CHAPTER 7. SEQUENCE LABELING

where � controls the amount of regularization. The final term in Equation 7.76 is a sum
over all possible labelings. This term is the log of the denominator in Equation 7.74, some-
times known as the partition function.9 There are |Y|

M possible labelings of an input of
size M , so we must again exploit the decomposition of the scoring function to compute
this sum efficiently.

The sum
P

y2Yw(i) exp (y,w) can be computed efficiently using the forward recur-
rence, which is closely related to the Viterbi recurrence. We first define a set of forward
variables, ↵m(ym), which is equal to the sum of the scores of all paths leading to tag ym at
position m:

↵m(ym) ,
X

y1:m�1

exp
mX

n=1

sn(yn, yn�1) [7.77]

=
X

y1:m�1

mY

n=1

exp sn(yn, yn�1). [7.78]

Note the similarity to the definition of the Viterbi variable, vm(ym) = maxy1:m�1

P
m

n=1 sn(yn, yn�1).
In the hidden Markov model, the Viterbi recurrence had an alternative interpretation as
the max-product algorithm (see Equation 7.53); analogously, the forward recurrence is
known as the sum-product algorithm, because of the form of [7.78]. The forward variable
can also be computed through a recurrence:

↵m(ym) =
X

y1:m�1

mY

n=1

exp sn(yn, yn�1) [7.79]

=
X

ym�1

(exp sm(ym, ym�1))
X

y1:m�2

m�1Y

n=1

exp sn(yn, yn�1) [7.80]

=
X

ym�1

(exp sm(ym, ym�1)) ⇥ ↵m�1(ym�1). [7.81]

Using the forward recurrence, it is possible to compute the denominator of the condi-
tional probability,

X

y2Y(w)

 (w,y) =
X

y1:M

(exp sM+1(⌥, yM))
MY

m=1

exp sm(ym, ym�1) [7.82]

=↵M+1(⌥). [7.83]

9The terminology of “potentials” and “partition functions” comes from statistical mechanics (Bishop,
2006).

Jacob Eisenstein. Draft of November 13, 2018.

Forward recurrence

Backward recurrence

166 CHAPTER 7. SEQUENCE LABELING

Ym�1 = k
0

Ym = k

↵m�1(k0) exp sm(k, k0) �m(k)

Figure 7.3: A schematic illustration of the computation of the marginal probability
Pr(Ym�1 = k0, Ym = k), using the forward score ↵m�1(k0) and the backward score �m(k).

transition (Ym�1 = k0) ! (Ym = k); and the suffixes ym:M , beginning with the tag Ym = k:

X

y:Ym=k,Ym�1=k0

MY

n=1

exp sn(yn, yn�1) =
X

y1:m�1:Ym�1=k0

m�1Y

n=1

exp sn(yn, yn�1)

⇥ exp sm(k, k0)

⇥

X

ym:M :Ym=k

M+1Y

n=m+1

exp sn(yn, yn�1). [7.87]

The result is product of three terms: a score that sums over all the ways to get to the
position (Ym�1 = k0), a score for the transition from k0 to k, and a score that sums over
all the ways of finishing the sequence from (Ym = k). The first term of Equation 7.87 is
equal to the forward variable, ↵m�1(k0). The third term — the sum over ways to finish the
sequence — can also be defined recursively, this time moving over the trellis from right to
left, which is known as the backward recurrence:

�m(k) ,
X

ym:M :Ym=k

M+1Y

n=m

exp sn(yn, yn�1) [7.88]

=
X

k02Y
exp sm+1(k

0, k)
X

ym+1:M :Ym=k0

M+1Y

n=m+1

exp sn(yn, yn�1) [7.89]

=
X

k02Y
exp sm+1(k

0, k) ⇥ �m+1(k
0). [7.90]

To understand this computation, compare with the forward recurrence in Equation 7.81.

Jacob Eisenstein. Draft of November 13, 2018.

166 CHAPTER 7. SEQUENCE LABELING

Ym�1 = k
0

Ym = k

↵m�1(k0) exp sm(k, k0) �m(k)

Figure 7.3: A schematic illustration of the computation of the marginal probability
Pr(Ym�1 = k0, Ym = k), using the forward score ↵m�1(k0) and the backward score �m(k).

transition (Ym�1 = k0) ! (Ym = k); and the suffixes ym:M , beginning with the tag Ym = k:

X

y:Ym=k,Ym�1=k0

MY

n=1

exp sn(yn, yn�1) =
X

y1:m�1:Ym�1=k0

m�1Y

n=1

exp sn(yn, yn�1)

⇥ exp sm(k, k0)

⇥

X

ym:M :Ym=k

M+1Y

n=m+1

exp sn(yn, yn�1). [7.87]

The result is product of three terms: a score that sums over all the ways to get to the
position (Ym�1 = k0), a score for the transition from k0 to k, and a score that sums over
all the ways of finishing the sequence from (Ym = k). The first term of Equation 7.87 is
equal to the forward variable, ↵m�1(k0). The third term — the sum over ways to finish the
sequence — can also be defined recursively, this time moving over the trellis from right to
left, which is known as the backward recurrence:

�m(k) ,
X

ym:M :Ym=k

M+1Y

n=m

exp sn(yn, yn�1) [7.88]

=
X

k02Y
exp sm+1(k

0, k)
X

ym+1:M :Ym=k0

M+1Y

n=m+1

exp sn(yn, yn�1) [7.89]

=
X

k02Y
exp sm+1(k

0, k) ⇥ �m+1(k
0). [7.90]

To understand this computation, compare with the forward recurrence in Equation 7.81.

Jacob Eisenstein. Draft of November 13, 2018.

Baum-Welch: EM for HMMs

• When complete LL is easy to maximize, as in the simple
count-based HMM

• It's an optimization method for the marginal LL

• For linear or NN parameterizations, backprop implicitly
does an E-step for you; no need for explicit E/M alternation

• E-step: calculate marginals with forward-backward

• p(yt-1, yt | w1..wT)

• p(yt | w1..wT)

• M-step: re-estimate parameters from expected counts

• Transitions: will use pair marginals

• Emissions: will use tag marginals

• Learns soft clusters kind-of-like POS tags

24

Structured Perceptron

• Viterbi is very common for decoding.
Inconvenient that you also need forward-
backward for CRF learning

• Collins 2002: actually you can directly train only
using Viterbi: structured perceptron
• Theoretical results hold from the usual perceptron...

• Important extension in NLP: Structured SVM
• a.k.a. Structured large-margin/hinge-loss

energy network
a.k.a. Cost-augmented perceptron

• SP, SSVM, CRF training are variants of highly
related objective functions and SSGD updates

25

Structured/multiclass Perceptron
(for any log-linear model)

• For ~10 iterations

• For each (x,y) in dataset

• PREDICT

• IF y=y*, do nothing

• ELSE update weights

y⇤ = argmax
y0

✓Tf(x, y0)

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate constant
e.g. r=1

Features for
TRUE output

Features for
PREDICTED output

Does this look similar to the CRF CLL gradient?

Perceptron notes/issues

• Issue: does it converge? (generally no)

• Solution: the averaged perceptron

• Can you regularize it? No... use SSVM instead
(cost-augmented perceptron)

• StructPerc and CRF perform similarly in practice

27

CRF extensions

• Not just chains

• 2nd-order, 3rd-order Markov assumptions…

• Trees…

• Grids, social networks, etc… any situation where
you want interdependence of the latent (predicted)
variables

• Best: a low-treewidth DGM (why?)

28

Structured Pred. and NNs

• Tradeoffs

• Complex output model + simple input model?
(CRF and linear features)
vs.

• Simple output model + complex input model?
(Indiv. classifier with LSTM “features”)

• Can combine both! (e.g. BiLSTM-CRF)

• RNNs as alternative to probabilistic model-based message
passing

• Success of BERT representation + indep classifier suggests
BERT (or similar) is already combining significant information

• Other work (e.g. VAEs): NNs for inference

29

a

e

