UMass CS 685, Spring 2021

HMM example from the Jurafsky and Martin textbook (Jason Eisner's ice cream example)

Figure 7.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 *1* 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq. 7.14: $\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(o_t)$. The resulting probability expressed in each cell is Eq. 7.13: $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j|\lambda)$.

Forward-Backward

Backward probs

$$\beta_t[k] = \sum_{y_{t+1}...y_n} P(y_t = k, w_{t+1}...w_n, y_{t+1}...y_n)$$

Backward Algo .: for each t=N..1, for each j,

$$\beta_t[j] := \sum_{k=1..K} \left(\beta_{t+1}[j] \ P_{trans}(k \mid j) \ P_{emit}(w_{t+1} \mid k) \right)$$

$\begin{array}{c} \hline \textbf{Tag Marginals:} \\ P(y_t = k \mid w_1..w_n) \propto \alpha_t[k] \ \beta_t[k] \\ P(y_{t-1} = j, y_t = k \mid w_1..w_n) \propto \alpha_t[j] \ P_{trans}(k \mid j) \ \beta_t[k] \end{array}$

TOD: Data

Trace backpointers to find best tag at second-to-last, e tc.

Figure 7.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $v_t(j)$ for two states at two time steps. The computation in each cell follows Eq. 7.19: $v_t(j) = \max_{1 \le i \le N-1} v_{t-1}(i) a_{ij} b_j(o_t)$. The resulting probability expressed in each cell is Eq. 7.18: $v_t(j) = P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j | \lambda)$.

CS690N Viterbi exercise

Sticky-favoring model over hidden state vocab {0,1}. Factor scores are "goodness points" are in log-scale additive form. (They're positive, though for an HMM they would all be negative.)

 $\begin{array}{l} \log P(y \mid w) = (\text{constant}) + G(y1, y2, y3) \\ G(y1, y2, y3) = A(y1, y2) + A(y2, y3) + B1(y1) + B2(y2) + B3(y3) \\ \textit{inference goal: argmax}_V G(y) \end{array}$

Additive Viterbi

For t=1..T,
For k in {0,1},

$$V_t[k] := \max(V_{t-1}[j] + A(j,k) + B_t(k))$$

 $B[k] := \arg\max_j (\dots)$
For t=1, set A₀(anything)=0 and V₀[anything]=0
Final backtrace step: take best-scoring from last V_T, follow the backpointers all the way back

Run Viterbi and fill out the trellis with arcs like in the textbook's HMM example.

