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OK this BERT sounds nice, but

e \What does it learn? How do we use it?
Rogers et al. (2020), TACL

e \NVhat about those important-seeming details?
Liu et al. (2019), RoBERIa, arxiv

e Does the multiingual training really work"?
Pires et al. (2019), ACL

e Do you need all the 16 heads”
Michel et al. (2019), NeurlPS

e How reliable is fine-tuning?
Dodge et al. (2020), arxiv
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Abstract

Transformer-based models have pushed state
of the art in many areas of NLP, but our under-
standing of what is behind their success is still
limited. This paper is the first survey of over
150 studies of the popular BERT model. We
review the current state of knowledge about
how BERT works, what kind of information
it learns and how it is represented, common
modifications to its training objectives and
architecture, the overparameterization issue,
and approaches to compression. We then
outline directions for future research.

* TJypes of knowledge in or not
iIn BERT
e Syntactic
e Semantic
 World knowledge

e |Where in BERT (layers”? self-
attn heads?) is this info”

e (Overview of fine-tuning and
model compression methods



What do heads learn??
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Figure 3: Attention patterns in BERT (Kovaleva et al., 2019).



Are Sixteen Heads Really Better than One?
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4.1 Head Importance Score for Pruning

As a proxy score for head importance, we look at the expected sensitivity of the model to the mask
variables &, defined in §2.3:
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Are Sixteen Heads Really Better than One?

* Not “no,” but...
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(a) Evolution of BLEU score on newstest2013 (b) Evolution of accuracy on the MultiNLI-matched
when heads are pruned from WMT. validation set when heads are pruned from BERT.

Figure 3: Evolution of accuracy by number of heads pruned according to [ (solid blue) and individual
oracle performance difference (dashed green).



On the other hand

e Several studies find suggestions that heads,
or combinations of them, may specialize in
syntactic relations (at least, more so than
chance)

e Are these findings consistent”
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Abstract

Language model pretraining has led to sig-
nificant performance gains but careful com-
parison between different approaches is chal-
lenging. Training is computationally expen-
sive, often done on private datasets of different
sizes, and, as we will show, hyperparameter
choices have significant impact on the final re-
sults. We present a replication study of BERT
pretraining (Devlin et al., 2019) that carefully
measures the impact of many key hyperparam-
eters and training data size. We find that BERT
was significantly undertrained, and can match
or exceed the performance of every model
published after it. Our best model achieves
state-of-the-art results on GLUE, RACE and
SQuAD. These results highlight the impor-
tance of previously overlooked design choices,

We present a replication study of BERT pre-
training (Devlin et al., 2019), which includes a
careful evaluation of the effects of hyperparmeter
tuning and training set size. We find that BERT
was significantly undertrained and propose an im-
proved recipe for training BERT models, which
we call RoBERTa, that can match or exceed the
performance of all of the post-BERT methods.
Our modifications are simple, they include: (1)
training the model longer, with bigger batches,
over more data; (2) removing the next sentence
prediction objective; (3) training on longer se-
quences; and (4) dynamically changing the mask-
ing pattern applied to the training data. We also
collect a large new dataset (CC-NEWS) of compa-
rable size to other privately used datasets, to better
control for training set size effects.
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Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE

Our reimplementation (with NSP loss):

SEGMENT-PAIR 90.4/78.7 84.0 02.9 64.2
SENTENCE-PAIR 88.7/76.2 82.9 02.1 63.0
Our reimplementation (without NSP loss):

FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
DOC-SENTENCES 90.6/79.7 84.7 02.7 65.6
BERTgAsk 88.5/76.3 84.3 02.8 64.3
XLNetgasg (K = 6) —/81.0 85.6 034 66.7

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,

SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERT,s¢ and
XLNetgase are from Yang et al. (2019).

o Next sentence prediction: oops doesn’t
matter



SQuAD

(v1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 39.0 95.3
+ additional data (33.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNet; arGE

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for ROBERTa as we pretrain over more data (16GB — 160GB of text) and pretrain
for longer (100K — 300K — 500K steps). Each row accumulates improvements from the rows above. RoBERTa

e How much does the model matter,
versus more data and more training?
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Multilingual BERT

[1google-research /[ bert ®©Wwatchv 918 W Star 217k

Code (®lssues 574 Pull requests 63 Actions Projects 0 Wiki Security Insights

Docs: Very wrong assertion that Wikipedia size correlates e
with number of speakers #/60

(G4 LIT-I'\l brendano opened this issue on Jul 12, 2019 - 3 comments

brendano commented on Jul 12, 2019 « edited ~ +@) e Assignees

slavpetrov
Currently bert/multilingual.md states:

"... the size of the Wikipedia for a given language varies greatly, and therefore low-resource languages Labels
may be "under-represented" in terms of the neural network model ... None yet
However, the size of a Wikipedia also correlates with the number of speakers of a language"



Disparity in language resources

Will pretraining on large unlabeled corpora solve NLU?
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How multilingual is Multilingual BERT?

Telmo Pires* Eva Schlinger Dan Garrette
Google Research
{telmop, eschling, dhgarrette}ll@google.com

Our results show that M-BERT is able to
perform cross-lingual generalization surprisingly
well. More importantly, we present the results of
a number of probing experiments designed to test
various hypotheses about how the model is able to
perform this transfer. Our experiments show that
while high lexical overlap between languages im-
proves transfer, M-BERT 1is also able to transfer
between languages written in different scripts—
thus having zero lexical overlap—indicating that
it captures multilingual representations. We fur-
ther show that transfer works best for typolog-
ically similar languages, suggesting that while
M-BERT’s multilingual representation 1s able to
map learned structures onto new vocabularies, it
does not seem to learn systematic transformations
of those structures to accommodate a target lan-
guage with different word order.



e /ero-shot transfer

1. Fine-tune for task on language X

e 2. Evaluate on language Y

Fine-tuning \ Eval EN DE ES IT

EN 96.82 89.40 8591 91.60
DE 83.99 9399 86.32 88.39
ES 81.64 88.87 96.71 93.71
IT 86.79 87.82 91.28 98.11

Table 2: POS accuracy on a subset of UD languages.

HI UR EN BG JA
HI 971 859 EN 968 87.1 494
UR 91.1 93.8 BG 822 989 51.6

JA- 574 672 965

Table 4: POS accuracy on the UD test set for languages
with different scripts. Row=fine-tuning, column=eval.
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Figure 1: Zero-shot NER F1 score versus entity word
piece overlap among 16 languages. While performance
using EN-BERT depends directly on word piece over-
lap, M-BERT’s performance is largely independent of
overlap, indicating that it learns multilingual represen-
tations deeper than simple vocabulary memorization.

e [hough results for code-switching and transliterated
transfer worse than previous work targeting those problems
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Fine-Tuning Pretrained Language Models:
Weight Initializations, Data Orders, and Early Stopping

Jesse Dodge !> Gabriel Ilharco® Roy Schwartz?3 Ali Farhadi??* Hannaneh Hajishirzi?> Noah Smith 23

Abstract MRPC RTE CoLA SST

: : : BERT (Phang et al., 2018) 90.7 70.0 62.1 92.5
Fine-tuning pretrained contextual word embed- BERT (Liu et al., 2019) 880 704 60.6 93.2
ding models to supervised downstream tasks has BERT (ours) ’ 91—4 77:3 67: 6 9 5:1

become commonplace in natural language pro-
cessing. This process, however, is often brittle:
even with the same hyperparameter values, dis-
tinct random seeds can lead to substantially differ-
ent results. To better understand this phenomenon,

STILTs (Phang et al., 2018) 90.9 834 62.1 93.2
XLNet (Yang et al., 2019) 89.2 83.8 63.6 95.6
RoBERTa (Liu et al., 2019) 90.9 86.6 68.0 96.4
ALBERT (Lan et al., 2019) 90.9 89.2 714 96.9

we experiment with ’.four datasets from the G-LUE Table 1. Fine-tuning BERT multiple times while varying only ran-
benchmark, fine-tuning BERT hundreds of times dom seeds leads to substantial improvements over previously pub-
on each while varying only the random seeds. We lished validation results with the same model and experimental

On small datasets, we observe that many fine-
tuning trials diverge part of the way through train-
ing, and we offer best practices for practitioners
to stop training less promising runs early. We

11* 1 1 11 ~ « 1 1 .
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Figure 4. Some promising seeds can be distinguished early in training. The plots show training curves for 20 random WI and DO
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Figure 3. Some seeds are better then others. Plots show the kernel density estimation of the distribution of validation performance for
best and worst WI and DO seeds. Curves for DO seeds are shown in dashed lines and for WI in solid lines. MRPC and RTE exhibit
pronounced bimodal shapes, where one of the modes represents divergence; models trained with the worst WI and DO are more likely to
diverge than learn to predict better than random guessing. Compared to the best seeds, the worst seeds are conspicuously more densely
populated in the lower performing regions, for all datasets.

MRPC RTE CoLA SST

0.921 > >
"' O Y 0.950
L (o] ©
~ ] = 0.751 =
o 0.90 S O 0.65 >
< O = O 0.945
< 0881 < — <<
- . 0.70 - (>U 0.60 .
(U — —
> 0.86 © o) T 0.940;
2 5 0.651 2 0.55 o
= 0.84 @ g 0
8 o o ‘D 0.9351 —— eval 10x per epoch
O 0.82 1 v | X Q eval 1x per epoch
X o 0.60 W o.50 o o 11 p p
L > P-4 eval 1X In tralnlng

0.80 41— i ; Ll ! ; ; ! ; ; Ll 0.930 1 . . .

10° 10! 102 10° 10! 102 10° 10! 102 10° 10! 102
Random seed assignments Random seed assignments Random seed assignments Random seed assignments

Figure 1. Expected validation performance (Dodge et al., 2019), plus and minus one standard deviation, as the number of experiments
increases. The x-axis represents the budget (e.g., x = 10 indicates a budget large enough to train 10 models). The y-axis is the expected
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