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• OK this BERT sounds nice, but 
• What does it learn? How do we use it? 

Rogers et al. (2020), TACL  
• What about those important-seeming details? 

Liu et al. (2019), RoBERTa, arxiv 
• Does the multilingual training really work? 

Pires et al. (2019), ACL  
• Do you need all the 16 heads? 

Michel et al. (2019), NeurIPS 
• How reliable is fine-tuning? 

Dodge et al. (2020), arxiv
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Abstract

Transformer-based models have pushed state

of the art in many areas of NLP, but our under-

standing of what is behind their success is still

limited. This paper is the first survey of over

150 studies of the popular BERT model. We

review the current state of knowledge about

how BERT works, what kind of information

it learns and how it is represented, common

modifications to its training objectives and

architecture, the overparameterization issue,

and approaches to compression. We then

outline directions for future research.

1 Introduction

Since their introduction in 2017, Transformers

(Vaswani et al., 2017) have taken NLP by storm,

offering enhanced parallelization and better mod-

eling of long-range dependencies. The best known

Transformer-based model is BERT (Devlin et al.,

2019); it obtained state-of-the-art results in nume-

rous benchmarks and is still a must-have baseline.

Although it is clear that BERT works remark-

ably well, it is less clear why, which limits further

hypothesis-driven improvement of the architec-

ture. Unlike CNNs, the Transformers have little

cognitive motivation, and the size of these models

limits our ability to experiment with pre-training

and perform ablation studies. This explains a large

number of studies over the past year that at-

tempted to understand the reasons behind BERT’s

performance.

In this paper, we provide an overview of what

has been learned to date, highlighting the questions

that are still unresolved. We first consider the

linguistic aspects of it, namely, the current evi-

dence regarding the types of linguistic and world

knowledge learned by BERT, as well as where and

how this knowledge may be stored in the model.

We then turn to the technical aspects of the model

and provide an overview of the current proposals

to improve BERT’s architecture, pre-training, and

fine-tuning. We conclude by discussing the issue

of overparameterization, the approaches to com-

pressing BERT, and the nascent area of pruning

as a model analysis technique.

2 Overview of BERT Architecture

Fundamentally, BERT is a stack of Transformer

encoder layers (Vaswani et al., 2017) that consist

of multiple self-attention ‘‘heads’’. For every in-

put token in a sequence, each head computes key,

value, and query vectors, used to create a weighted

representation. The outputs of all heads in the

same layer are combined and run through a fully

connected layer. Each layer is wrapped with a skip

connection and followed by layer normalization.

The conventional workflow for BERT consists

of two stages: pre-training and fine-tuning. Pre-

training uses two self-supervised tasks: masked

language modeling (MLM, prediction of randomly

masked input tokens) and next sentence predic-

tion (NSP, predicting if two input sentences are

adjacent to each other). In fine-tuning for down-

stream applications, one or more fully connected

layers are typically added on top of the final

encoder layer.

The input representations are computed as

follows: Each word in the input is first tokenized

into wordpieces (Wu et al., 2016), and then three

embedding layers (token, position, and segment)

are combined to obtain a fixed-length vector.

Special token [CLS] is used for classification

predictions, and [SEP] separates input segments.

Google1 and HuggingFace (Wolf et al., 2020)

provide many variants of BERT, including the

original ‘‘base’’ and ‘‘large’’ versions. They vary

in the number of heads, layers, and hidden state

size.

1https://github.com/google-research/bert.
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• Types of knowledge in or not 
in BERT 
• Syntactic 
• Semantic 
• World knowledge 

• Where in BERT (layers? self-
attn heads?) is this info? 

• Overview of fine-tuning and 
model compression methods



What do heads learn??
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Figure 3: Attention patterns in BERT (Kovaleva et al., 2019).

on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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Abstract

Attention is a powerful and ubiquitous mechanism for allowing neural models to
focus on particular salient pieces of information by taking their weighted average
when making predictions. In particular, multi-headed attention is a driving force
behind many recent state-of-the-art natural language processing (NLP) models such
as Transformer-based MT models and BERT. These models apply multiple attention
mechanisms in parallel, with each attention “head” potentially focusing on different
parts of the input, which makes it possible to express sophisticated functions beyond
the simple weighted average. In this paper we make the surprising observation
that even if models have been trained using multiple heads, in practice, a large
percentage of attention heads can be removed at test time without significantly
impacting performance. In fact, some layers can even be reduced to a single
head. We further examine greedy algorithms for pruning down models, and
the potential speed, memory efficiency, and accuracy improvements obtainable
therefrom. Finally, we analyze the results with respect to which parts of the model
are more reliant on having multiple heads, and provide precursory evidence that
training dynamics play a role in the gains provided by multi-head attention1.

1 Introduction

Transformers (Vaswani et al., 2017) have shown state of the art performance across a variety of
NLP tasks, including, but not limited to, machine translation (Vaswani et al., 2017; Ott et al., 2018),
question answering (Devlin et al., 2018), text classification (Radford et al., 2018), and semantic role
labeling (Strubell et al., 2018). Central to its architectural improvements, the Transformer extends the
standard attention mechanism (Bahdanau et al., 2015; Cho et al., 2014) via multi-headed attention
(MHA), where attention is computed independently by Nh parallel attention mechanisms (heads). It
has been shown that beyond improving performance, MHA can help with subject-verb agreement
(Tang et al., 2018) and that some heads are predictive of dependency structures (Raganato and
Tiedemann, 2018). Since then, several extensions to the general methodology have been proposed
(Ahmed et al., 2017; Shen et al., 2018).

1Code to replicate our experiments is provided at https://github.com/pmichel31415/
are-16-heads-really-better-than-1

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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(a) Evolution of BLEU score on newstest2013
when heads are pruned from WMT.

(b) Evolution of accuracy on the MultiNLI-matched
validation set when heads are pruned from BERT.

Figure 3: Evolution of accuracy by number of heads pruned according to Ih (solid blue) and individual
oracle performance difference (dashed green).

4.1 Head Importance Score for Pruning

As a proxy score for head importance, we look at the expected sensitivity of the model to the mask
variables ⇠h defined in §2.3:

Ih = Ex⇠X

����
@L(x)
@⇠h

���� (2)

where X is the data distribution and L(x) the loss on sample x. Intuitively, if Ih has a high value then
changing ⇠h is liable to have a large effect on the model. In particular we find the absolute value to be
crucial to avoid datapoints with highly negative or positive contributions from nullifying each other
in the sum. Plugging Equation 1 into Equation 2 and applying the chain rule yields the following
final expression for Ih:

Ih = Ex⇠X

����Atth(x)T
@L(x)

@Atth(x)

����

This formulation is reminiscent of the wealth of literature on pruning neural networks (LeCun et al.,
1990; Hassibi and Stork, 1993; Molchanov et al., 2017, inter alia). In particular, it is equivalent to the
Taylor expansion method from Molchanov et al. (2017).

As far as performance is concerned, estimating Ih only requires performing a forward and backward
pass, and therefore is not slower than training. In practice, we compute the expectation over the
training data or a subset thereof.5 As recommended by Molchanov et al. (2017) we normalize the
importance scores by layer (using the `2 norm).

4.2 Effect of Pruning on BLEU/Accuracy

Figures 3a (for WMT) and 3b (for BERT) describe the effect of attention-head pruning on model
performance while incrementally removing 10% of the total number of heads in order of increasing
Ih at each step. We also report results when the pruning order is determined by the score difference
from §3.2 (in dashed lines), but find that using Ih is faster and yields better results.

We observe that this approach allows us to prune up to 20% and 40% of heads from WMT and
BERT (respectively), without incurring any noticeable negative impact. Performance drops sharply
when pruning further, meaning that neither model can be reduced to a purely single-head attention
model without retraining or incurring substantial losses to performance. We refer to Appendix B for
experiments on four additional datasets.

5For the WMT model we use all newstest20[09-12] sets to estimate I .
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On the other hand

• Several studies find suggestions that heads, 
or combinations of them, may specialize in 
syntactic relations (at least, more so than 
chance) 

• Are these findings consistent?
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• Next sentence prediction: oops doesn’t 
matter



• How much does the model matter, 
versus more data and more training?
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Model data bsz steps
SQuAD

MNLI-m SST-2
(v1.1/2.0)

RoBERTa

with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3

+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4

BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7

XLNetLARGE

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB→ 160GB of text) and pretrain
for longer (100K → 300K → 500K steps). Each row accumulates improvements from the rows above. RoBERTa
matches the architecture and training objective of BERTLARGE . Results for BERTLARGE and XLNetLARGE are from
Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.

Devlin et al. (2019). We pretrain our model using

1024 V100 GPUs for approximately one day.

Results We present our results in Table 4. When

controlling for training data, we observe that

RoBERTa provides a large improvement over the

originally reported BERTLARGE results, reaffirming

the importance of the design choices we explored

in Section 4.

Next, we combine this data with the three ad-

ditional datasets described in Section 3.2. We

train RoBERTa over the combined data with the

same number of training steps as before (100K).

In total, we pretrain over 160GB of text. We ob-

serve further improvements in performance across

all downstream tasks, validating the importance of

data size and diversity in pretraining.9

Finally, we pretrain RoBERTa for significantly

longer, increasing the number of pretraining steps

from 100K to 300K, and then further to 500K. We

again observe significant gains in downstream task

performance, and the 300K and 500K step mod-

els outperform XLNetLARGE across most tasks. We

note that even our longest-trained model does not

appear to overfit our data and would likely benefit

from additional training.

In the rest of the paper, we evaluate our best

RoBERTa model on the three different bench-

marks: GLUE, SQuaD and RACE. Specifically

9Our experiments conflate increases in data size and di-
versity. We leave a more careful analysis of these two dimen-
sions to future work.

we consider RoBERTa trained for 500K steps over

all five of the datasets introduced in Section 3.2.

5.1 GLUE Results

For GLUE we consider two finetuning settings.

In the first setting (single-task, dev) we finetune

RoBERTa separately for each of the GLUE tasks,

using only the training data for the correspond-

ing task. We consider a limited hyperparameter

sweep for each task, with batch sizes ∈ {16, 32}
and learning rates ∈ {1e−5, 2e−5, 3e−5}, with a

linear warmup for the first 6% of steps followed by

a linear decay to 0. We finetune for 10 epochs and

perform early stopping based on each task’s eval-

uation metric on the dev set. The rest of the hyper-

parameters remain the same as during pretraining.

In this setting, we report the median development

set results for each task over five random initial-

izations, without model ensembling.

In the second setting (ensembles, test), we com-

pare RoBERTa to other approaches on the test set

via the GLUE leaderboard. While many submis-

sions to the GLUE leaderboard depend on multi-

task finetuning, our submission depends only on

single-task finetuning. For RTE, STS and MRPC

we found it helpful to finetune starting from the

MNLI single-task model, rather than the baseline

pretrained RoBERTa. We explore a slightly wider

hyperparameter space, described in the Appendix,

and ensemble between 5 and 7 models per task.
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Multilingual BERT



Disparity in language resources 
Will pretraining on large unlabeled corpora solve NLU?
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Abstract

In this paper, we show that Multilingual BERT
(M-BERT), released by Devlin et al. (2019)
as a single language model pre-trained from
monolingual corpora in 104 languages, is
surprisingly good at zero-shot cross-lingual
model transfer, in which task-specific annota-
tions in one language are used to fine-tune the
model for evaluation in another language. To
understand why, we present a large number of
probing experiments, showing that transfer is
possible even to languages in different scripts,
that transfer works best between typologically
similar languages, that monolingual corpora
can train models for code-switching, and that
the model can find translation pairs. From
these results, we can conclude that M-BERT
does create multilingual representations, but
that these representations exhibit systematic
deficiencies affecting certain language pairs.

1 Introduction

Deep, contextualized language models provide
powerful, general-purpose linguistic represen-
tations that have enabled significant advances
among a wide range of natural language process-
ing tasks (Peters et al., 2018b; Devlin et al., 2019).
These models can be pre-trained on large corpora
of readily available unannotated text, and then
fine-tuned for specific tasks on smaller amounts of
supervised data, relying on the induced language
model structure to facilitate generalization beyond
the annotations. Previous work on model prob-
ing has shown that these representations are able to
encode, among other things, syntactic and named
entity information, but they have heretofore fo-
cused on what models trained on English capture
about English (Peters et al., 2018a; Tenney et al.,
2019b,a).

⇤Google AI Resident.

In this paper, we empirically investigate the
degree to which these representations generalize
across languages. We explore this question us-
ing Multilingual BERT (henceforth, M-BERT), re-
leased by Devlin et al. (2019) as a single language
model pre-trained on the concatenation of mono-
lingual Wikipedia corpora from 104 languages.1

M-BERT is particularly well suited to this probing
study because it enables a very straightforward ap-
proach to zero-shot cross-lingual model transfer:
we fine-tune the model using task-specific super-
vised training data from one language, and evalu-
ate that task in a different language, thus allowing
us to observe the ways in which the model gener-
alizes information across languages.

Our results show that M-BERT is able to
perform cross-lingual generalization surprisingly
well. More importantly, we present the results of
a number of probing experiments designed to test
various hypotheses about how the model is able to
perform this transfer. Our experiments show that
while high lexical overlap between languages im-
proves transfer, M-BERT is also able to transfer
between languages written in different scripts—
thus having zero lexical overlap—indicating that
it captures multilingual representations. We fur-
ther show that transfer works best for typolog-
ically similar languages, suggesting that while
M-BERT’s multilingual representation is able to
map learned structures onto new vocabularies, it
does not seem to learn systematic transformations
of those structures to accommodate a target lan-
guage with different word order.

2 Models and Data

Like the original English BERT model (hence-
forth, EN-BERT), M-BERT is a 12 layer trans-
former (Devlin et al., 2019), but instead of be-

1https://github.com/google-research/bert



• Zero-shot transfer 
• 1. Fine-tune for task on language X 
• 2. Evaluate on language Y
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Fine-tuning \ Eval EN DE NL ES
EN 90.70 69.74 77.36 73.59
DE 73.83 82.00 76.25 70.03
NL 65.46 65.68 89.86 72.10
ES 65.38 59.40 64.39 87.18

Table 1: NER F1 results on the CoNLL data.

ing trained only on monolingual English data with
an English-derived vocabulary, it is trained on the
Wikipedia pages of 104 languages with a shared
word piece vocabulary. It does not use any marker
denoting the input language, and does not have
any explicit mechanism to encourage translation-
equivalent pairs to have similar representations.

For NER and POS, we use the same sequence
tagging architecture as Devlin et al. (2019). We to-
kenize the input sentence, feed it to BERT, get the
last layer’s activations, and pass them through a fi-
nal layer to make the tag predictions. The whole
model is then fine-tuned to minimize the cross en-
tropy loss for the task. When tokenization splits
words into multiple pieces, we take the prediction
for the first piece as the prediction for the word.

2.1 Named entity recognition experiments

We perform NER experiments on two datasets:
the publicly available CoNLL-2002 and -2003
sets, containing Dutch, Spanish, English, and Ger-
man (Tjong Kim Sang, 2002; Sang and Meulder,
2003); and an in-house dataset with 16 languages,2

using the same CoNLL categories. Table 1 shows
M-BERT zero-shot performance on all language
pairs in the CoNLL data.

2.2 Part of speech tagging experiments

We perform POS experiments using Universal De-
pendencies (UD) (Nivre et al., 2016) data for 41
languages.3 We use the evaluation sets from Ze-
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2Arabic, Bengali, Czech, German, English, Spanish,
French, Hindi, Indonesian, Italian, Japanese, Korean, Por-
tuguese, Russian, Turkish, and Chinese.

3Arabic, Bulgarian, Catalan, Czech, Danish, German,
Greek, English, Spanish, Estonian, Basque, Persian, Finnish,
French, Galician, Hebrew, Hindi, Croatian, Hungarian, In-
donesian, Italian, Japanese, Korean, Latvian, Marathi, Dutch,
Norwegian (Bokmaal and Nynorsk), Polish, Portuguese (Eu-
ropean and Brazilian), Romanian, Russian, Slovak, Slove-
nian, Swedish, Tamil, Telugu, Turkish, Urdu, and Chinese.

Fine-tuning \ Eval EN DE ES IT
EN 96.82 89.40 85.91 91.60
DE 83.99 93.99 86.32 88.39
ES 81.64 88.87 96.71 93.71
IT 86.79 87.82 91.28 98.11

Table 2: POS accuracy on a subset of UD languages.

Figure 1: Zero-shot NER F1 score versus entity word
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using EN-BERT depends directly on word piece over-
lap, M-BERT’s performance is largely independent of
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Because M-BERT uses a single, multilingual vo-
cabulary, one form of cross-lingual transfer occurs
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tion, we present experiments probing M-BERT’s
dependence on this superficial form of generaliza-
tion: How much does transferability depend on
lexical overlap? And is transfer possible to lan-
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If M-BERT’s ability to generalize were mostly
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4Results on CoNLL data follow the same trends, but those
trends are more apparent with 16 languages than with 4.
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Fine-tuning \ Eval EN DE NL ES
EN 90.70 69.74 77.36 73.59
DE 73.83 82.00 76.25 70.03
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Model EN DE NL ES
Lample et al. (2016) 90.94 78.76 81.74 85.75
EN-BERT 91.07 73.32 84.23 81.84

Table 3: NER F1 results fine-tuning and evaluating on
the same language (not zero-shot transfer).

performance using EN-BERT depends directly on
word piece overlap: the ability to transfer dete-
riorates as word piece overlap diminishes, and F1
scores are near zero for languages written in differ-
ent scripts. M-BERT’s performance, on the other
hand, is flat for a wide range of overlaps, and even
for language pairs with almost no lexical overlap,
scores vary between 40% and 70%, showing that
M-BERT’s pretraining on multiple languages has
enabled a representational capacity deeper than
simple vocabulary memorization.5

To further verify that EN-BERT’s inability to
generalize is due to its lack of a multilingual rep-
resentation and not an inability of its English-
specific word piece vocabulary to represent data in
other languages, we evaluate on non-cross-lingual
NER and see that it performs comparably to a pre-
vious state of the art model (see Table 3).

3.2 Generalization across scripts
M-BERT’s ability to transfer between languages
that are written in different scripts, and thus have
effectively zero lexical overlap, is surprising given
that it was trained on separate monolingual cor-
pora and not with a multilingual objective. To
probe deeper into how the model is able to per-
form this generalization, Table 4 shows a sample
of POS results for transfer across scripts.

Among the most surprising results, an M-BERT
model that has been fine-tuned using only POS-
labeled Urdu (written in Arabic script), achieves
91% accuracy on Hindi (written in Devanagari
script), even though it has never seen a single POS-
tagged Devanagari word. This provides clear ev-
idence of M-BERT’s multilingual representation
ability, mapping structures onto new vocabularies
based on a shared representation induced solely
from monolingual language model training data.

However, cross-script transfer is less accurate
for other pairs, such as English and Japanese, indi-
cating that M-BERT’s multilingual representation
is not able to generalize equally well in all cases.
A possible explanation for this, as we will see in
section 4.2, is typological similarity. English and
Japanese have a different order of subject, verb

5Individual language trends are similar to aggregate plots.

HI UR
HI 97.1 85.9
UR 91.1 93.8

EN BG JA
EN 96.8 87.1 49.4
BG 82.2 98.9 51.6
JA 57.4 67.2 96.5

Table 4: POS accuracy on the UD test set for languages
with different scripts. Row=fine-tuning, column=eval.

and object, while English and Bulgarian have the
same, and M-BERT may be having trouble gener-
alizing across different orderings.

4 Encoding Linguistic Structure

In the previous section, we showed that M-BERT’s
ability to generalize cannot be attributed solely
to vocabulary memorization, and that it must be
learning a deeper multilingual representation. In
this section, we present probing experiments that
investigate the nature of that representation: How
does typological similarity affect M-BERT’s abil-
ity to generalize? Can M-BERT generalize from
monolingual inputs to code-switching text? Can
the model generalize to transliterated text without
transliterated language model pretraining?

4.1 Effect of language similarity
Following Naseem et al. (2012), we compare lan-
guages on a subset of the WALS features (Dryer
and Haspelmath, 2013) relevant to grammatical
ordering.6 Figure 2 plots POS zero-shot accuracy
against the number of common WALS features.
As expected, performance improves with similar-
ity, showing that it is easier for M-BERT to map
linguistic structures when they are more similar,
although it still does a decent job for low similar-
ity languages when compared to EN-BERT.

4.2 Generalizing across typological features
Table 5 shows macro-averaged POS accuracies for
transfer between languages grouped according to
two typological features: subject/object/verb or-
der, and adjective/noun order7 (Dryer and Haspel-
math, 2013). The results reported include only
zero-shot transfer, i.e. they do not include cases

681A (Order of Subject, Object and Verb), 85A (Order of
Adposition and Noun), 86A (Order of Genitive and Noun),
87A (Order of Adjective and Noun), 88A (Order of Demon-
strative and Noun), and 89A (Order of Numeral and Noun).

7SVO languages: Bulgarian, Catalan, Czech, Danish,
English, Spanish, Estonian, Finnish, French, Galician, He-
brew, Croatian, Indonesian, Italian, Latvian, Norwegian
(Bokmaal and Nynorsk), Polish, Portuguese (European and
Brazilian), Romanian, Russian, Slovak, Slovenian, Swedish,
and Chinese. SOV Languages: Basque, Farsi, Hindi,
Japanese, Korean, Marathi, Tamil, Telugu, Turkish, and
Urdu.

• Though results for code-switching and transliterated 
transfer worse than previous work targeting those problems
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Weight Initializations, Data Orders, and Early Stopping

Figure 4. Some promising seeds can be distinguished early in training. The plots show training curves for 20 random WI and DO
combinations for each dataset. Models are evaluated every 10th of an epoch (except SST, which was evaluated every 100 steps, equivalent
to 42 times per epoch). For the smaller datasets, training is unstable, and a non-negligible portion of the models yields poor performance,
which can be identified early on.

Figure 5. Performance early in training is highly correlated with performance late in training. Each figure shows the Spearman’s rank
correlation between the validation performance at different points in training; the axes represent epochs. A point at coordinates i and j in
the plots indicates the correlation between the best found performances after i and after j evaluations. Note that the plots are symmetric.

dataset this is still a strong strategy.

Early stopping works We compare this algorithm with
our baseline of running multiple experiments all the way
through training, without any early stopping (f=1, t=p) and
using the same amount of computation. Specifically, for a
given computational budget equivalent to fully training t
models, we measure improvement as the relative error reduc-
tion from using early stopping with the best found settings
for that computational budget. Figure 7 shows the relative
error reduction for each dataset as the computational budget
varies, where we observe small but reasonably consistent
improvements on all tasks.

6. Related work
Most work on hyperparameter optimization tunes a number
of impactful hyperparameters, such as the learning rate, the
width of the layers in the model, and the strength of the
regularization (Li et al., 2018; Bergstra et al., 2011). For
modern machine learning models such tuning has proven
to have a large impact on the performance; in this work we

only examine two oft-overlooked choices that can be cast as
hyperparameters and still find room for optimization.

Melis et al. (2018) heavily tuned the hyperpamareters of an
LSTM language model, for some experiments running 1,500
rounds of Bayesian optimization (thus, training 1,500 mod-
els). They showed that an LSTM, when given such a large
budget for hyperparameter tuning, can outperform more
complicated neural models. While such work informs the
community about the best performance found after expend-
ing very large budgets, it is difficult for future researchers
to build on this without some measure of how the perfor-
mance changes as a function of computational budget. Our
work similarly presents the best-found performance using a
large budget (Table 1), but also includes estimates of how
performance changes as a function of budget (Figure 1).

A line of research has addressed the distribution from which
initializations are drawn. The Xavier initialization (Glorot
& Bengio, 2010) and Kaiming initialization (He et al., 2015)
initialize weights by sampling from a uniform distribution
or normal distribution with variance scaled so as to preserve
gradient magnitudes through backpropagation. Similarly,

• IMO "random seed" really means "random trial" 
A “good random seed” means a useful combination of 

• random parameter initialization 
• random data order
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Figure 1. Expected validation performance (Dodge et al., 2019), plus and minus one standard deviation, as the number of experiments
increases. The x-axis represents the budget (e.g., x = 10 indicates a budget large enough to train 10 models). The y-axis is the expected
performance of the best of the x models trained. Each plot shows three evaluation scenarios: in the first, the model is frequently evaluated
on the validation set during training (blue); in the second, at the end of each epoch (orange); and in the third, only at the end training
(green). As we increase the number of evaluations per run we see higher expected performance and smaller variances. Further, more
frequently evaluating the model on validation data leads to higher expected validation values.

data during training (all models trained for three epochs):
once after training (green), after each of the three epochs
(orange), and frequently throughout training (ten times per
epoch, blue).6 Considering the benefits of more frequent
evaluations as shown in Figure 1, we thus recommend this
practice in similar scenarios.

4. Weight initialization and data order
To better understand the high variance in performance across
trials, we analyze two source of randomness: the weight
initialization of the final classification layer and the order the
training data is presented to the model. While previous work
on fine-tuning pretrained contextual representation models
(Devlin et al., 2019; Phang et al., 2018) has generally used a
single random seed to control these two factors, we analyze
them separately.

Our experiments are conducted with every combination of
a set of weight initialization seeds (WI) and a set of data
order (DO) seeds that control these factors. One data order
can be viewed as one sample from the set of permutations
of the training data. Similarly, one weight initialization
can be viewed as a specific set of samples from the normal
distribution from which we draw them.

An overview of the collected data is presented in Figure
2, where each colored cell represents the validation per-
formance for a single experiment. In the plots, each row
represents a single weight initialization and each column
represents a single data order. We sort the rows and columns
by their averages; the top row contains experiments with the

6Compared to training, evaluation is typically cheap, since the
validation set is smaller than the training set and evaluation requires
only a forward pass. Moreover, evaluating on the validation data
can be done in parallel to training, and thus does not necessarily
slow down training.

MRPC RTE CoLA SST
Agg. over WI .058 .066 .090 .0028
Agg. over DO .059 .067 .095 .0024
Total .061 .069 .101 .0028

Table 3. Expected (average) standard deviation in validation per-
formance across runs. The expected standard deviation of given
WI and DO random seeds are close in magnitude, and only slightly
below the overall standard deviation.

WI with the highest average performance, and the rightmost
column contains experiments with the DO with the highest
average performance.7

For MRPC, RTE, and CoLA, a fraction of the trained models
diverge, yielding performance close to that of predicting the
most frequent label (see Table 2). This partially explains the
large variance found in the expected validation curves for
those three datasets in Figure 1.

4.1. Decoupling

From Figure 2, it is clear that different random seed com-
binations can lead to substantially different validation per-
formance. In this section, we investigate the sources of this
variance, decoupling the distribution of performance based
on each of the factors that control randomness.

For each dataset, we compute for each WI and each DO
seed the standard deviation in validation performance across
all trials with that seed. We then compute the expected (av-
erage) standard deviation, aggregated under all WI or all
DO seeds, which are shown in Table 3; we show the dis-
tribution of standard deviations in the appendix. Although
their magnitudes vary significantly between the datasets,

7Each cell represents an independent sample, so the rows and
columns can be reordered.

Weight Initializations, Data Orders, and Early Stopping

Figure 2. A visualization of validation performance for all experiments, where each colored cell represents the performance of a training
run with a specific WI and DO seed. Rows and columns are sorted by their average, such that the best WI seed corresponds to the top row
of each plot, and the best DO seed correspond to the right-most column. Especially on smaller datasets a large variance in performance
is observed across different seed combinations, and on MRPC and RTE models frequently diverge, performing close to the majority
baselines (listed in Table 2).

Figure 3. Some seeds are better then others. Plots show the kernel density estimation of the distribution of validation performance for
best and worst WI and DO seeds. Curves for DO seeds are shown in dashed lines and for WI in solid lines. MRPC and RTE exhibit
pronounced bimodal shapes, where one of the modes represents divergence; models trained with the worst WI and DO are more likely to
diverge than learn to predict better than random guessing. Compared to the best seeds, the worst seeds are conspicuously more densely
populated in the lower performing regions, for all datasets.

the expected standard deviation from the WI and DO seeds
is comparable, and are slightly below the overall standard
deviation inside a given task.

4.2. Some random seeds are better than others

To investigate whether some WI or DO seeds are better
than their counterparts, Figure 3 plots the random seeds
with the best and worst average performance. The best and
worst seeds exhibit quite different behavior: compared to the
best, the worst seeds have an appreciably higher density on
lower performance ranges, indicating that they are generally
inferior. On MRPC, RTE, and CoLA the performance of
the best and worst WIs are more dissimilar than the best and
worst DOs, while on SST the opposite is true. This could be
related to the size of the data; MRPC, RTE, and CoLA are
smaller datasets, whereas SST is larger, so SST has more
data to order and more weight updates to move away from
the initialization.

MRPC RTE CoLA SST
WI 2.0⇥10�6 2.8⇥10�4 7.0⇥10�3 3.3⇥10�2

DO 8.3⇥10�3 3.2⇥10�3 1.1⇥10�2 1.3⇥10�5

Table 4. p-values from ANOVA indicate that there is evidence to
reject the null hypothesis that the performance of the best and worst
WIs and DOs have distributions with the same means (p < 0.05).

Using ANOVA (Fisher, 1935) to test for statistical signif-
icance, we examine whether the performance of the best
and worst DOs and WIs have distributions with different
means. The results are shown in Table 4. For all datasets,
we find the best and worst DOs and WIs are significantly
different in their expected performance (p < 0.05). We
include a discussion of the assumptions behind ANOVA in
the appendix.


