BERT (Part 1)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing <u>http://brenocon.com/cs685</u> <u>https://people.cs.umass.edu/~brenocon/cs685_s21/</u>

Brendan O'Connor

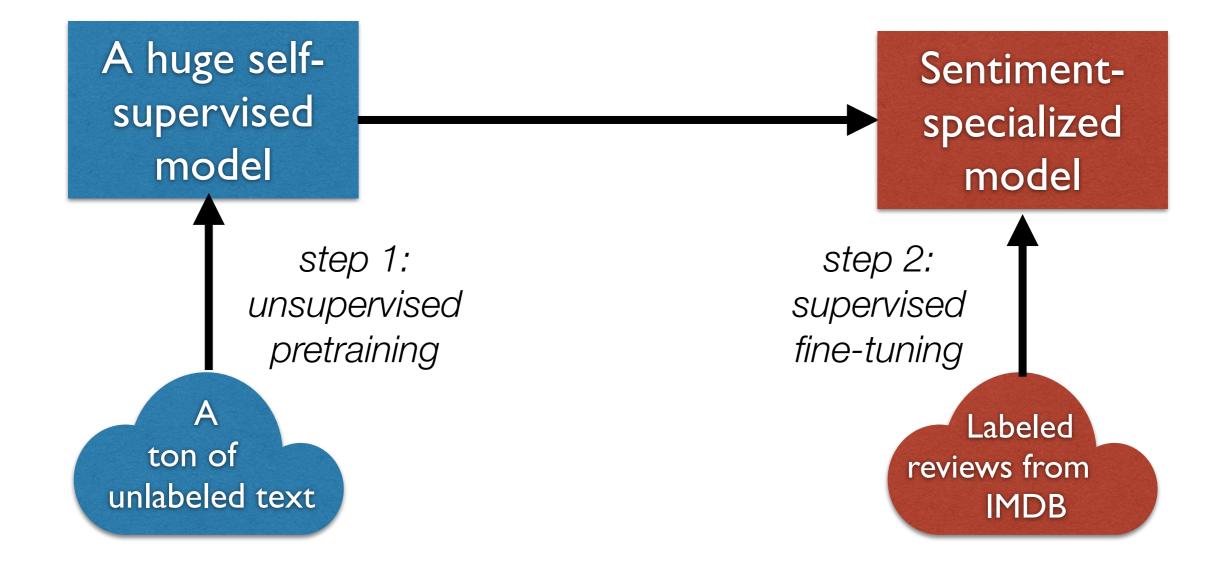
College of Information and Computer Sciences University of Massachusetts Amherst

[Nearly all slides from Jacob Devlin]

- My OH is tomorrow, 9:30-10:30 (now on webpage)
- For Wed: reading review #3: pick a BERTology paper
- Fri Mar 26: Lit review due
- Fri Apr 2: Project proposals due
 - will talk about on Wed

What is transfer learning?

- In our context: take a network trained on a task for which it is easy to generate labels, and adapt it to a different task for which it is harder.
 - In computer vision: train a CNN on ImageNet, transfer its representations to every other CV task
 - In NLP: train a really big language model on billions of words, transfer to every NLP task!



• 6

ΤΟ

- Context in 2018: ELMo demonstrated
 - unsupervised transfer
 - context-dependent, token-level feature extraction
 - with LSTM-based bidirectional LM
- Then there was BERT. Same thing but
 - fine-tuning, not just feature extraction [Follow-up work: but does this matter?]
 - with Transformer-based masked "LM"
 - and lots of layers [Follow-up work: what do they learn?]
 - [More follow-ups: do we need so many attention heads?]
 - [More follow-ups: how much training variation is there?]
- Today: BERT, or a close variant, is the best! But we don't know why.
 - Will we still be using BERT in X years?

Problem with Previous Methods

- **Problem**: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?

Problem with Previous Methods

- **Problem**: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- <u>Reason 1</u>: Directionality is needed to generate a well-formed probability distribution.

• We don't care about this. Why not?

Problem with Previous Methods

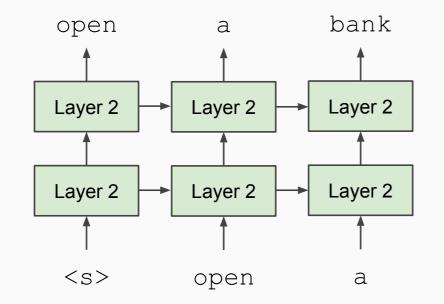
- **Problem**: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- <u>Reason 1</u>: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- <u>Reason 2</u>: Words can "see themselves" in a bidirectional encoder.

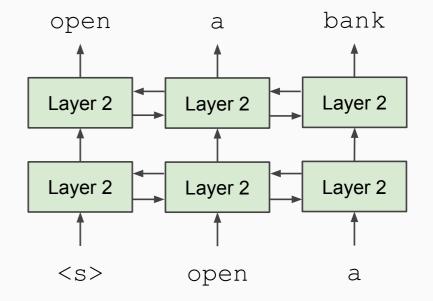
Unidirectional vs. Bidirectional Models

Unidirectional context Build representation incrementally

Bidirectional context

Words can "see themselves"





Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - We always use k = 15%

What are the pros and cons of increasing *k*?

Masked LM

- Problem: Mask token never seen at fine-tuning
- Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK] went to the store → went to the [MASK]
- 10% of the time, replace random word
 went to the store → went to the running
- 10% of the time, keep same
 went to the store → went to the store

Next Sentence Prediction

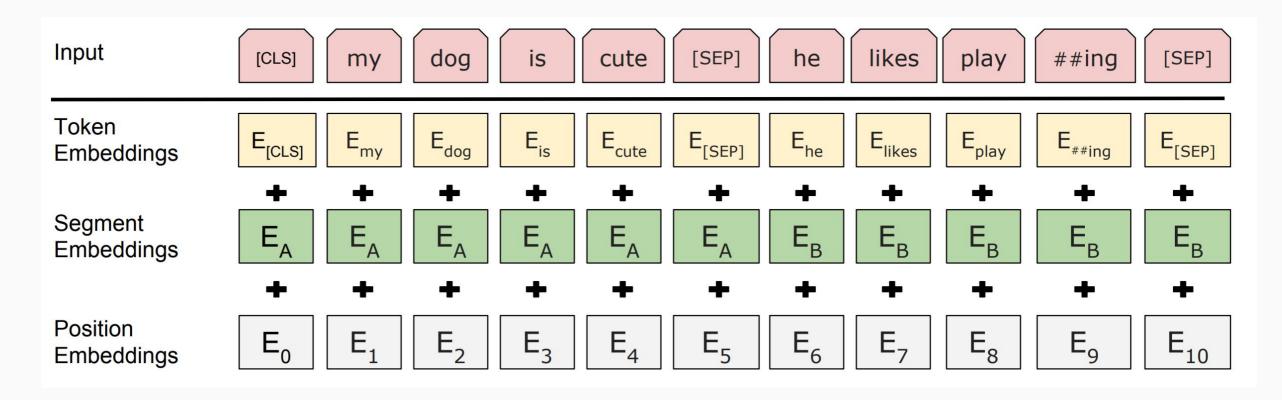
• To learn *relationships* between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

NOTE: Follow-up work, e.g. RoBERTa (Liu et al. 2019) has cast doubt on whether this part is necessary.

Input Representation

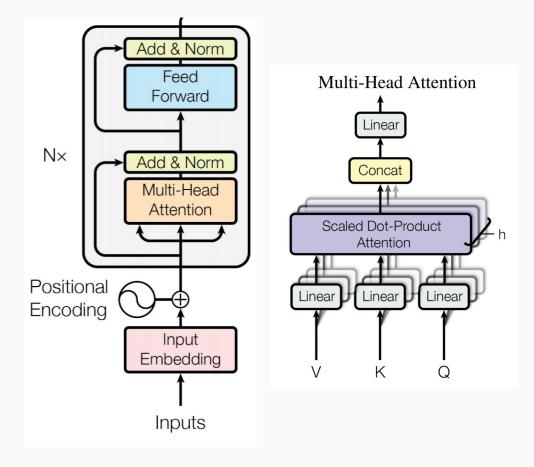


- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
- Single sequence is much more efficient.

Model Architecture

Transformer encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning



My favorite notation so far (added to webpage from last week): https://namedtensor.github.io/#sec:transformer

Model Architecture

- Empirical advantages of Transformer vs. LSTM:
- 1. Self-attention == no locality bias
 - Long-distance context has "equal opportunity"
- 2. Single multiplication per layer == efficiency on TPU
 - Effective batch size is number of *words*, not sequences

X_0_2

X 1 2

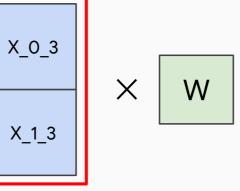
X 1 3

X 0 1

X 1 1

X 0 0

X 1 0



LSTM

X_0_0	X_0_1	X_0_2	X_0_3
X_1_0	X_1_1	X_1_2	X_1_3

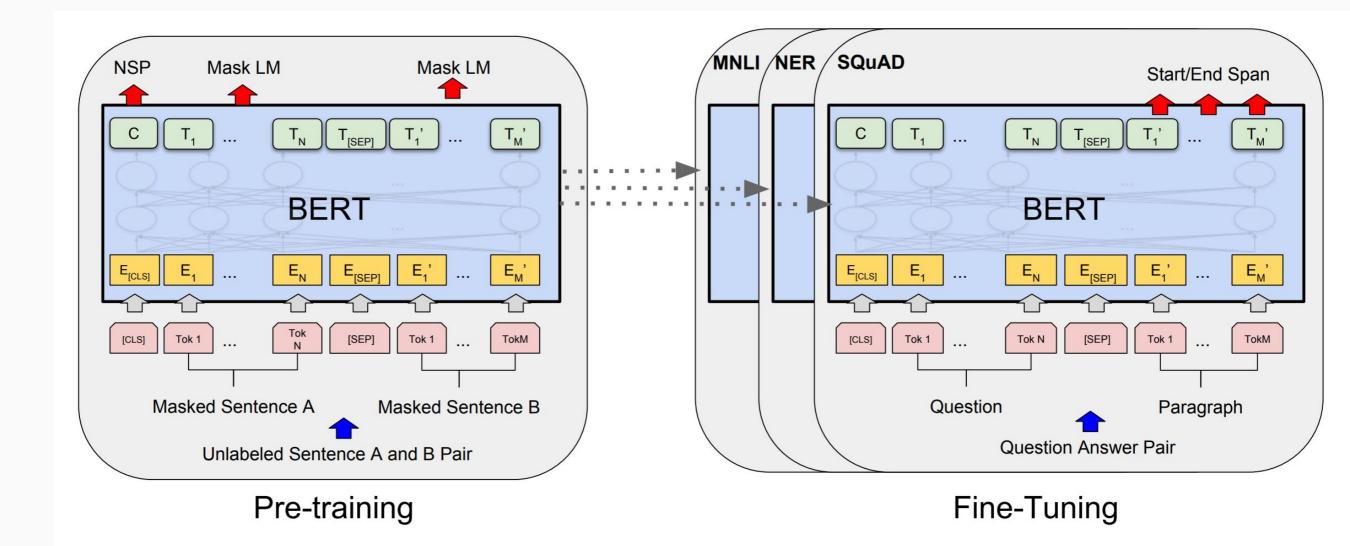
Х

TPU hardware = Google's variant of GPU

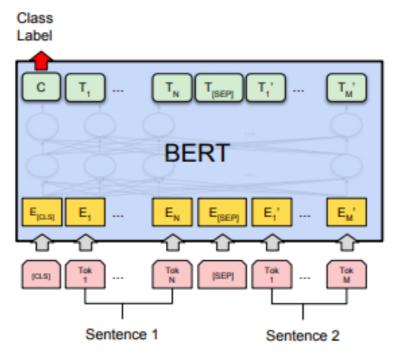
Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- <u>Batch Size</u>: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- <u>Training Time</u>: 1M steps (~40 epochs)
- <u>Optimizer</u>: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

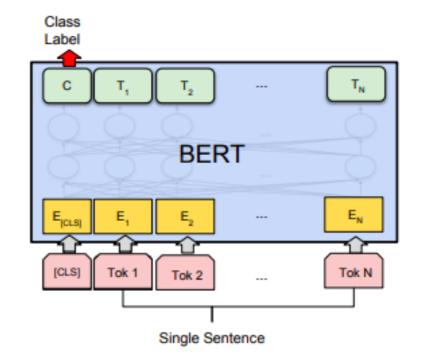
Fine-Tuning Procedure



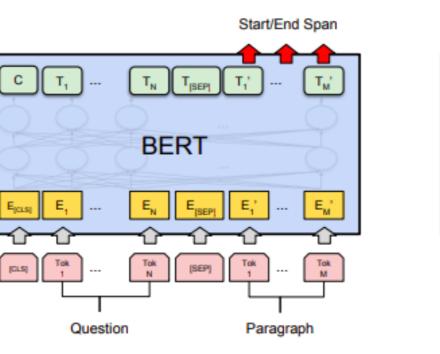
Fine-Tuning Procedure



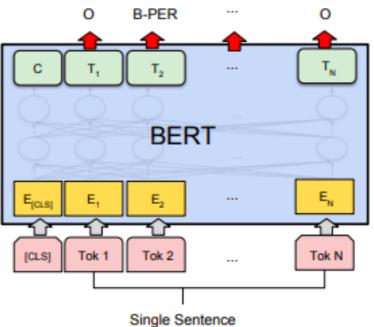
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(b) Single Sentence Classification Tasks: SST-2, CoLA



(c) Question Answering Tasks: SQuAD v1.1



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially sanctified in Jainism. <u>Hypothesis</u>: Jainism hates nature. <u>Label</u>: Contradiction

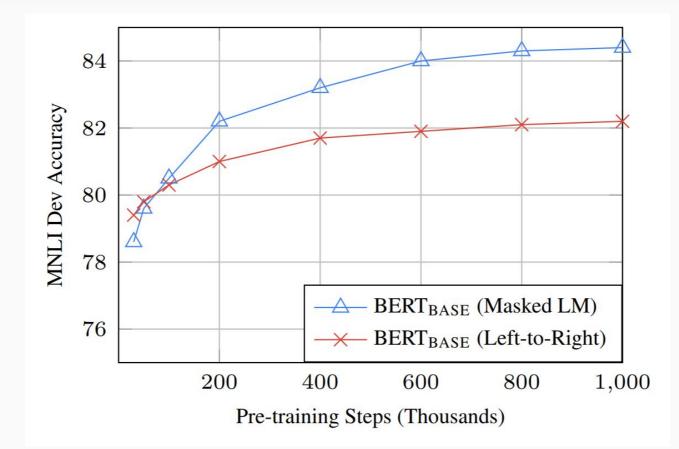
CoLa

<u>Sentence</u>: The wagon rumbled down the road. <u>Label</u>: Acceptable

<u>Sentence</u>: The car honked down the road. <u>Label</u>: Unacceptable

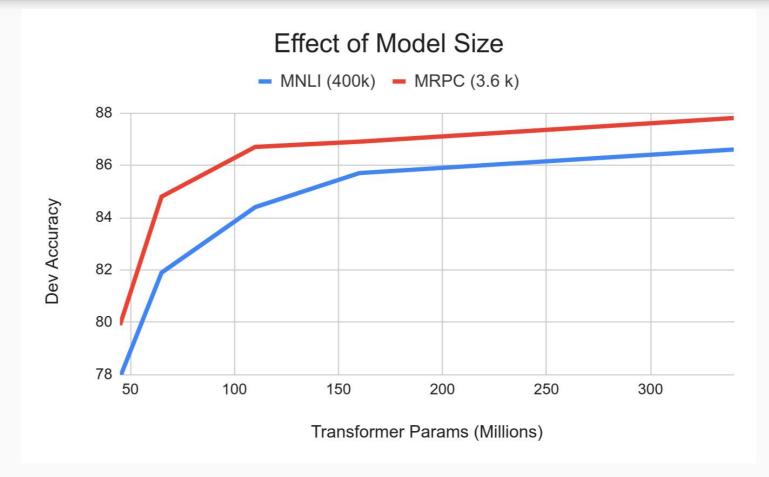
Presentation/summary tip: Always show examples of he task!

Effect of Directionality and Training Time



- Masked LM takes slightly longer to converge because we only predict 15% instead of 100%
- But absolute results are much better almost immediately

Effect of Model Size



- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

Features vs. fine-tuning

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERTLARGE	96.6	92.8
BERTBASE	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

Effect of Masking Strategy

Masking Rates			Dev Set Results			
MASK	SAME	RND	MNLI Fine-tune	NER Fine-tune Feature-base		
80% 100% 80% 80% 0%	10% 0% 0% 20% 20%	10% 0% 20% 0% 80%	84.2 84.3 84.1 84.4 83.7	95.4 94.9 95.2 95.2 95.2 94.8	94.9 94.0 94.6 94.7 94.6	
0%	20%	100%	83.6	94.8 94.9	94.0 94.6	

• Masking 100% of the time hurts on feature-based approach

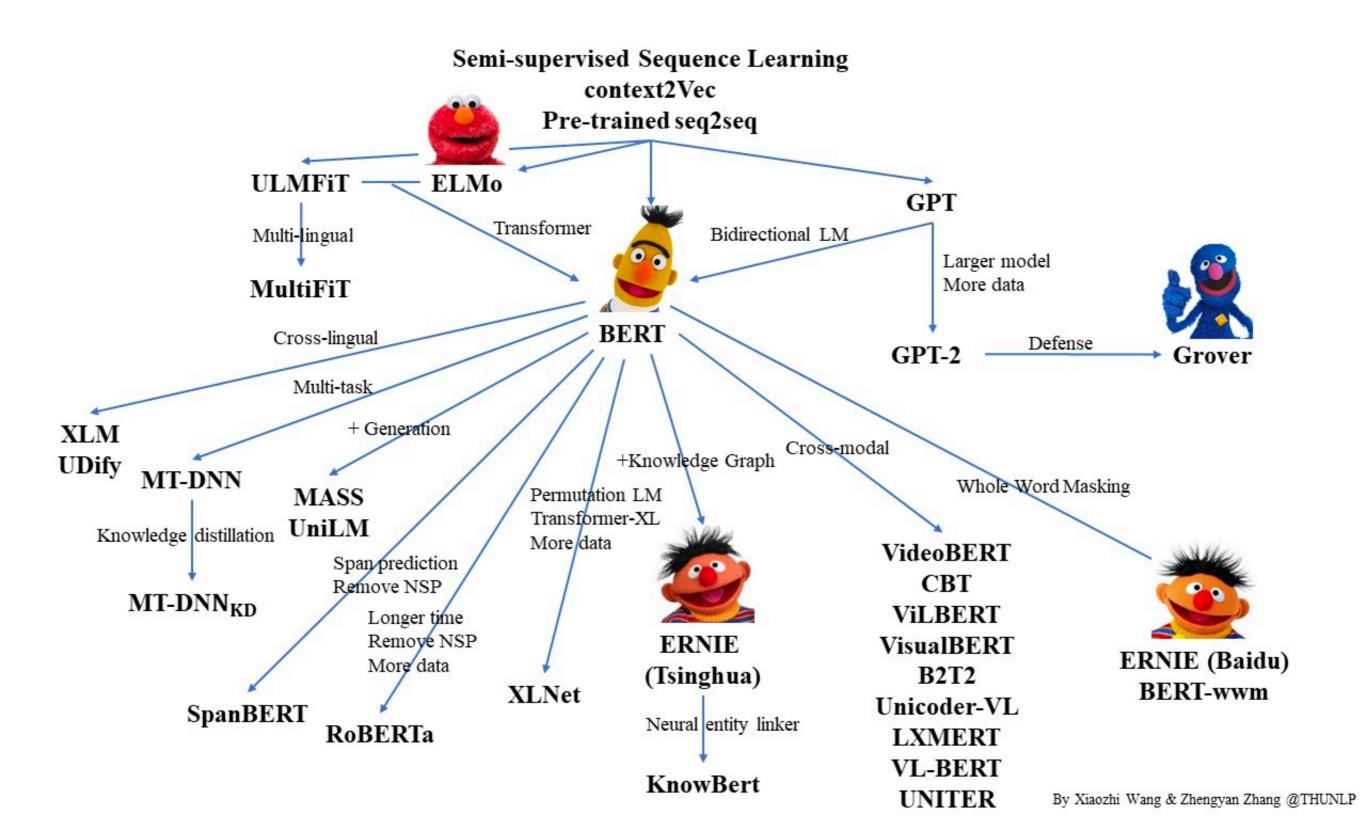
• Using random word 100% of time hurts slightly

Multilingual BERT

• Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary.

System	English	Chinese	Spanish
XNLI Baseline - Translate Train	73.7	67.0	68.8
XNLI Baseline - Translate Test	73.7	68.4	70.7
BERT - Translate Train	81.9	76.6	77.8
BERT - Translate Test	81.9	70.1	74.9
BERT - Zero Shot	81.9	63.8	74.3

- XNLI is MultiNLI translated into multiple languages.
- Always evaluate on human-translated Test.
- <u>Translate Train</u>: MT English Train into Foreign, then fine-tune.
- <u>Translate Test</u>: MT Foreign Test into English, use English model.
- <u>Zero Shot</u>: Use Foreign test on English model.



Common Questions

- Is *deep* bidirectionality really necessary? What about ELMo-style shallow bidirectionality on bigger model?
- Advantage: Slightly faster training time
- Disadvantages:
 - Will need to add non-pre-trained bidirectional model on top
 - Right-to-left SQuAD model doesn't see question
 - \circ $\,$ Need to train two models
 - Off-by-one: LTR predicts next word, RTL predicts previous word
 - Not trivial to add arbitrary pre-training tasks.

Common Questions

- The model must be learning more than "contextual embeddings"
- Alternate interpretation: Predicting missing words (or next words) requires learning many types of language understanding features.
 - syntax, semantics, pragmatics, coreference, etc.
- Implication: Pre-trained model is much bigger than it needs to be to solve specific task
- Task-specific model distillation words very well

Common Questions

- Is modeling "solved" in NLP? I.e., is there a reason to come up with novel model architectures?
 - But that's the most fun part of NLP research :(
- Maybe yes, for now, on some tasks, like SQuAD-style QA.
 - At least using the same deep learning "lego blocks"
- Examples of NLP models that are not "solved":
 - Models that minimize total training cost vs. accuracy on modern hardware
 - Models that are very parameter efficient (e.g., for mobile deployment)
 - Models that represent knowledge/context in latent space
 - Models that represent structured data (e.g., knowledge graph)
 - Models that jointly represent vision and language

Conclusions

- Empirical results from BERT are great, but biggest impact on the field is:
- With pre-training, bigger == better, without clear limits (so far).
- Unclear if adding things on top of BERT really helps by very much.
 - Good for people and companies building NLP systems.
 - Not necessary a "good thing" for researchers, but important.

- Context in 2018: ELMo demonstrated
 - unsupervised transfer
 - context-dependent, token-level feature extraction
 - with LSTM-based bidirectional LM
- Then there was BERT. Same thing but
 - fine-tuning, not just feature extraction [Follow-up work: but does this matter?]
 - with Transformer-based masked "LM"
 - and lots of layers [Follow-up work: what do they learn?]
 - [More follow-ups: do we need so many attention heads?]
 - [More follow-ups: how much training variation is there?]
- Today: BERT, or a close variant, is the best! But we don't know why.
 - Will we still be using BERT in X years?