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Announcements

• I'll do OH tomorrow 10am-11am - at the 
usual course zoom link
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Recurrent neural networks

• Idea: extend a feedforward net to sequential data by 
iterating an NN at each position.


• Theoretically, an RNN can learn any update function. 
(Represent any Turing machine!)
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Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.

[Diagram: Jacob Eisenstein]
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Jacob Eisenstein. Draft of November 13, 2018.

Elman (“vanilla”) RNN unit:
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in the sequence. RNN language models are defined,

xm ,�wm [6.27]
hm =RNN(xm,hm�1) [6.28]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.29]

where � is a matrix of word embeddings, and xm denotes the embedding for word wm.
The conversion of wm to xm is sometimes known as a lookup layer, because we simply
lookup the embeddings for each word in a table; see § 3.2.4.

The Elman unit defines a simple recurrent operation (Elman, 1990),

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.30]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,
often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a
squashing function, ensuring that each element of hm is constrained to the range [�1, 1].

Although each wm depends on only the context vector hm�1, this vector is in turn
influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w1

affects h1, which affects h2, and so on, until the information is propagated all the way to
hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram
language models, where any information outside the n-word window is ignored. In prin-
ciple, the RNN language model can handle long-range dependencies, such as number
agreement over long spans of text — although it would be difficult to know where exactly
in the vector hm this information is represented. The main limitation is that informa-
tion is attenuated by repeated application of the squashing function g. Long short-term
memories (LSTMs), described below, are a variant of RNNs that address this issue, us-
ing memory cells to propagate information through the sequence without applying non-
linearities (Hochreiter and Schmidhuber, 1997).

The denominator in Equation 6.29 is a computational bottleneck, because it involves
a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,
which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov
et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive
estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-
stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).
Both of these strategies are described in § 14.5.3.

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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• Is this Markovian?

• What sort of information could hm contain?

• Hyperparameter: hm, βw length K.

hm: hidden state 
      at position m

ɸw: word embedding
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Capturing Long Range Dependencies

If an RNN Language Model is to outperform an n-gram model it
must discover and represent long range dependencies:

p(sandcastle | Alice went to the beach. There she built a)

While a simple RNN LM can represent such dependencies in
theory, can it learn them?

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf


RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost4 to
changes in h1:

hn = g(V [xn; hn�1] + c)

p̂n = softmax(Whn + b) w4
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Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).
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agreement over long spans of text — although it would be difficult to know where exactly
in the vector hm this information is represented. The main limitation is that informa-
tion is attenuated by repeated application of the squashing function g. Long short-term
memories (LSTMs), described below, are a variant of RNNs that address this issue, us-
ing memory cells to propagate information through the sequence without applying non-
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exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.29]

where � is a matrix of word embeddings, and xm denotes the embedding for word wm.
The conversion of wm to xm is sometimes known as a lookup layer, because we simply
lookup the embeddings for each word in a table; see § 3.2.4.

The Elman unit defines a simple recurrent operation (Elman, 1990),

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.30]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,
often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a
squashing function, ensuring that each element of hm is constrained to the range [�1, 1].

Although each wm depends on only the context vector hm�1, this vector is in turn
influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w1

affects h1, which affects h2, and so on, until the information is propagated all the way to
hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram
language models, where any information outside the n-word window is ignored. In prin-
ciple, the RNN language model can handle long-range dependencies, such as number
agreement over long spans of text — although it would be difficult to know where exactly
in the vector hm this information is represented. The main limitation is that informa-
tion is attenuated by repeated application of the squashing function g. Long short-term
memories (LSTMs), described below, are a variant of RNNs that address this issue, us-
ing memory cells to propagate information through the sequence without applying non-
linearities (Hochreiter and Schmidhuber, 1997).

The denominator in Equation 6.29 is a computational bottleneck, because it involves
a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,
which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov
et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive
estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-
stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).
Both of these strategies are described in § 14.5.3.

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).
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Alternative RNN unit: a gated unit 

Most common: LSTM
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hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf ) forget gate [6.35]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.36]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.37]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.38]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.39]
hm+1 =om+1 � tanh(cm+1) output. [6.40]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-
tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current
input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf ). The overall operation can be infor-
mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing
the LSTM state after reading token m.

The LSTM outperforms standard recurrent neural networks across a wide range of
problems. It was first used for language modeling by Sundermeyer et al. (2012), but can
be applied more generally: the vector hm can be treated as a complete representation of

Jacob Eisenstein. Draft of November 13, 2018.

brenocon



LSTM RNN (Long short-term memory)
• Goals:


• 1. Be able to “remember” for longer distances


• 2. Stable backpropagation during training


• Augment individual timesteps with a number of specialized vectors and 
gating functions.  (There are alternative gated RNNs, but at this point LSTM 
has won.)


• LSTM RNNs are ~now? ~recently? a common baseline NN model in NLP

10

Long Short Term Memory (LSTM)

Christopher Olah: Understanding LSTM Networks
colah.github.io/posts/2015-08-Understanding-LSTMs/

• Main state


• c:  Memory cell


• h:  Hidden state


• Update system


• g:  proposed new cell


• f, i, o:  Forget, Input, Output gates 
control acceptance of g into new cell & state


brenocon

brenocon



First Citizen:

Nay, then, that was hers,

It speaks against your other service:

But since the

youth of the circumstance be spoken:

Your uncle and one Baptista's daughter.


SEBASTIAN:

Do I stand till the break off.


BIRON:

Hide thy head.


VENTIDIUS:

He purposeth to Athens: whither, with the vow

I made to handle you.

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.


Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Character LMs comparison: LSTM vs. N-Gram

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Structure awareness

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


can we use language models 
to produce word embeddings?

Deep contextualized word representations. Peters et al., NAACL 2018
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Contextual Representations

● Problem: Word embeddings are applied in a 
context free manner

● Solution: Train contextual representations on text 
corpus

[0.3, 0.2, -0.8, …]

open a bank account on the river bank

open a bank account

[0.9, -0.2, 1.6, …]

on the river bank

[-1.9, -0.4, 0.1, …]
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History of Contextual Representations

● Semi-Supervised Sequence Learning, Google, 
2015

Train LSTM
Language Model

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

LSTM

very

LSTM

funny

LSTM

movie

POSITIVE

...

Fine-tune on 
Classification Task
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History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017

Train Separate Left-to-Right and 
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained 
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture



Deep bidirectional language model

… download     new      games        or           play     ?? 




… download     new      games        or           play     ?? 


Deep bidirectional language model



LSTM

Deep bidirectional language model

… download     new      games        or           play     ?? 
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Deep bidirectional language model
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Deep bidirectional language model
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LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Deep bidirectional language model
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LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Deep bidirectional language model

… download     new      games        or           play     ?? 




LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

??

Deep bidirectional language model

… download     new      games        or           play     ?? 




biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

 …     games       or           play        online        via     …

Use all layers of language model

0.25

0.6

embeddings from 
language models

0.15

ELMo



Learned task-specific combination of layers

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

biLSTM

 …     games       or           play        online        via     …

s3

s2

embeddings from 
language models

s1

ELMo
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layer weights



Contextual representations

ELMo representations are contextual – 
they depend on the entire sentence in 
which a word is used.

how many different embeddings does 
ELMo compute for a given word?



how to use ELMo in NLP tasks?

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

 ELMo  ELMo  ELMo  ELMo

What additional 
parameters do we 
add to our model 

when using ELMo?



ELMo improves NLP tasks


