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Announcements

• Hope HW1 is going well!

• Reading review #2 due this Monday

• I'll post some sample lit review topics
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• Ms. Yates’s order was a remarkable rebuke by 
a government official to a sitting president, 
and it recalled the so-called Saturday Night 
Massacre in 1973, when President Richard M. 
Nixon fired his attorney general and deputy 
attorney general for refusing to dismiss the 
special prosecutor in the Watergate ___
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Language models

• P(text) = P(w1,w2…wN) = 
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Language models
• P(text) = P(w1,w2…wN) =  ∏i P(wi | w1..wi-1)         

                                        [history-based a.k.a. "causal"]

• Generation: 
• Actually generate from the language distribution

• Evaluate quality of proposed translations/outputs

• Unsupervised transfer learning: Induce useful word 
or token embeddings for other NLP tasks

• Pretrained word embeddings (last lecture)

• Pretrained token (contextual) embeddings: ELMO, BERT…

• Usual assumption: train on very large corpus (>10M, >100M 
tokens)

• Model types

• Short- or long-distance?

• Explicit features or neural representations?

• Model architecture to transmit sequential/structural information?
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Information theory perspective

• Coding interpretation: average number of bits/nats

• Entropy of uniform V-sided die?
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Cross-entropy: model PM, test distribution PT

(equiv. to average neg. log-likelihood)

argmax
L
Pr(L A) = argmax

L

Pr(A L) Pr(L)
Pr(A)

= argmax
L
Pr(A L) Pr(L) (1)

For a given signal A, Pr(A L) is estimated by the acoustic matcher, which compares A to its stored models
of all speech units. Providing an estimate for Pr(L) is the responsibility of the language model.

Let L = wn1
def= w1 w2 . . .wn, where the wi’s are the words that make up the hypothesis. One way to

estimate Pr(L) is to use the chain rule:

Pr(L) =
n

i=1

Pr(wi wi 1
1 )

Indeed, most statistical language models try to estimate expressions of the form Pr(wi wi 1
1 ). The latter is

often written as Pr(w h), where h def= wi 1
1 is called the history.

1.2 View from Information Theory

Another view of statistical language modeling is grounded in information theory. Language is considered
an information source L ([Abramson 63]), which emits a sequence of symbols wi from a finite alphabet (the
vocabulary). The distribution of the next symbol is highly dependent on the identity of the previous ones —
the source L is a high-order Markov chain.

The information source L has a certain inherent entropy H. This is the amount of non-redundant informa-
tion conveyed per word, on average, by L. According to Shannon’s theorem ([Shannon 48]), any encoding
of L must use at least H bits per word, on average.

The quality of a language modelM can be judged by its cross entropywith regard to the distribution PT(x)
of some hitherto unseen text T:

H (PT;PM) =
x
PT(x) logPM(x) (2)

H (PT;PM) has also been called the logprob ([Jelinek 89]). Often, the perplexity ([Jelinek et al. 77]) of the
text with regard to the model is reported. It is defined as:

PPM(T) = 2H (PT;PM) (3)

Using an ideal model, which capitalizes on every conceivable correlation in the language, L’s cross entropy
would equal its true entropy H. In practice, however, all models fall far short of that goal. Worse, the quantity
H is not directly measurable (though it can be bounded, see [Shannon 51, Cover and King 78, Jelinek 89]).
On the other extreme, if the correlations among the wi’s were completely ignored, the cross entropy of the
source L would be w PrPRIOR(w) log PrPRIOR(w), where PrPRIOR(w) is the prior probability of w. This quantity
is typically much greater than H. All other language models fall within this range.

Under this view, the goal of statistical language modeling is to identify and exploit sources of information
in the language stream, so as to bring the cross entropy down, as close as possible to the true entropy. This
view of statistical language modeling is dominant in this work.
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5.4. EVALUATING LANGUAGE MODELS 131

5.4.2 Perplexity

Held-out likelihood is usually presented as perplexity, which is a deterministic transfor-
mation of the log-likelihood into an information-theoretic quantity,

Perplex(w) = 2
� `(w)

M , [5.49]

where M is the total number of tokens in the held-out corpus.

Lower perplexities correspond to higher likelihoods, so lower scores are better on this
metric. (How to remember: lower perplexity is better, because your language model is
less perplexed.) To understand perplexity, here are some special cases:

• In the limit of a perfect language model, probability 1 is assigned to the held-out
corpus, with Perplex(w) = 2

� 1
M log2 1 = 2

0
= 1.

• In the opposite limit, probability zero is assigned to the held-out corpus, which cor-
responds to an infinite perplexity, Perplex(w) = 2

� 1
M log2 0 = 2

1
= 1.

• Assume a uniform, unigram model in which p(wi) =
1
V

for all words in the vocab-
ulary. Then,

log2(w) =

MX

m=1

log2
1

V
= �

MX

m=1

log2 V = �M log2 V

Perplex(w) =2
1
M M log2 V

=2
log2 V

=V.

This is the “worst reasonable case” scenario, since you could build such a language
model without even looking at the data.

In practice, n-gram language models tend to give perplexities in the range between 1

and V . For example, Jurafsky and Martin estimate a language model over a vocabularly of
roughly 20, 000 words, on 38 million tokens of text from the Wall Street Journal (Jurafsky
and Martin, 2009, page 97). They report the following perplexities on a held-out set of 1.5
million tokens:

• Unigram (n = 1): 962

• Bigram (n = 2): 170

• Trigram (n = 3): 109

Will this trend continue?

(c) Jacob Eisenstein 2018. Work in progress.

Perplexity = 

WSJ Penn Treebank 
V = 20,000 

1.5 M test tokens
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N-gram models

• Markov assumption: only use short distance 
information, within a fixed window, say k=5 
(Markov window)

• “N-gram LMs”:  Markov models with count-
based parameter fitting

• SotA:  Kneser-Ney smoothing among Markovian 
orders

• When training datasets are “small” (<100M 
tokens), these often work best.

• Neural LMs are better with more data
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Smoothing

• Pseudocount Smoothing (Dirichlet prior) 
for parameter estimation:
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6.2. SMOOTHING AND DISCOUNTING 129

These two problems point to another bias-variance tradeoff (see § 2.2.4). A small n-
gram size introduces high bias, and a large n-gram size introduces high variance. We
can even have both problems at the same time! Language is full of long-range dependen-
cies that we cannot capture because n is too small; at the same time, language datasets
are full of rare phenomena, whose probabilities we fail to estimate accurately because n
is too large. One solution is to try to keep n large, while still making low-variance esti-
mates of the underlying parameters. To do this, we will introduce a different sort of bias:
smoothing.

6.2 Smoothing and discounting

Limited data is a persistent problem in estimating language models. In § 6.1, we pre-
sented n-grams as a partial solution. Bit sparse data can be a problem even for low-order
n-grams; at the same time, many linguistic phenomena, like subject-verb agreement, can-
not be incorporated into language models without high-order n-grams. It is therefore
necessary to add additional inductive biases to n-gram language models. This section
covers some of the most intuitive and common approaches, but there are many more (see
Chen and Goodman, 1999).

6.2.1 Smoothing

A major concern in language modeling is to avoid the situation p(w) = 0, which could
arise as a result of a single unseen n-gram. A similar problem arose in Naı̈ve Bayes, and
the solution was smoothing: adding imaginary “pseudo” counts. The same idea can be
applied to n-gram language models, as shown here in the bigram case,

psmooth(wm | wm�1) =
count(wm�1, wm) + ↵P

w02V count(wm�1, w0) + V ↵
. [6.13]

This basic framework is called Lidstone smoothing, but special cases have other names:

• Laplace smoothing corresponds to the case ↵ = 1.

• Jeffreys-Perks law corresponds to the case ↵ = 0.5, which works well in practice
and benefits from some theoretical justification (Manning and Schütze, 1999).

To ensure that the probabilities are properly normalized, anything that we add to the
numerator (↵) must also appear in the denominator (V ↵). This idea is reflected in the
concept of effective counts:

c⇤i = (ci + ↵)
M

M + V ↵
, [6.14]

Under contract with MIT Press, shared under CC-BY-NC-ND license.

• Note smoothing usually redistributes mass from seen words to 
unseen words 

• Absolute Discounting:  when count>0, subtract d (0<d<1) 

• Smoothing is important for many other word statistics-based 
preprocessing methods, like identifying multiword expressions a.k.a. 
collocations ("social security")
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Interpolation
• Idea: higher Markov orders are more sparse. 

So combine multiple order models

• Interpolation: weighted averaging (λ≥0, Σ λn=1):
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case of backing off from bigrams to unigrams, the bigram probabilities are,

c⇤(i, j) =c(i, j) � d [6.15]

pKatz(i | j) =

8
<

:

c
⇤(i,j)
c(j) if c(i, j) > 0

↵(j) ⇥
punigram(i)

P
i0:c(i0,j)=0 punigram(i0) if c(i, j) = 0.

[6.16]

The term ↵(j) indicates the amount of probability mass that has been discounted for
context j. This probability mass is then divided across all the unseen events, {i0 : c(i0, j) =
0}, proportional to the unigram probability of each word i0. The discount parameter d can
be optimized to maximize performance (typically held-out log-likelihood) on a develop-
ment set.

6.2.3 *Interpolation

Backoff is one way to combine different order n-gram models. An alternative approach
is interpolation: setting the probability of a word in context to a weighted sum of its
probabilities across progressively shorter contexts.

Instead of choosing a single n for the size of the n-gram, we can take the weighted
average across several n-gram probabilities. For example, for an interpolated trigram
model,

pInterpolation(wm | wm�1, wm�2) = �3p⇤
3(wm | wm�1, wm�2)

+ �2p⇤
2(wm | wm�1)

+ �1p⇤
1(wm).

In this equation, p⇤
n

is the unsmoothed empirical probability given by an n-gram lan-
guage model, and �n is the weight assigned to this model. To ensure that the interpolated
p(w) is still a valid probability distribution, the values of � must obey the constraint,P

nmax
n=1 �n = 1. But how to find the specific values?

An elegant solution is expectation-maximization. Recall from chapter 5 that we can
think about EM as learning with missing data: we just need to choose missing data such
that learning would be easy if it weren’t missing. What’s missing in this case? Think of
each word wm as drawn from an n-gram of unknown size, zm 2 {1 . . . nmax}. This zm is
the missing data that we are looking for. Therefore, the application of EM to this problem
involves the following generative model:

for Each token wm,m = 1, 2, . . . ,M do:
draw the n-gram size zm ⇠ Categorical(�);
draw wm ⇠ p⇤

zm
(wm | wm�1, . . . , wm�zm).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

• It’s a generative model:
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Under contract with MIT Press, shared under CC-BY-NC-ND license.• If only we knew z, learning would be easy.

• So… use EM!
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EM for the interpolation model
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If the missing data {Zm} were known, then � could be estimated as the relative fre-
quency,

�z =
count(Zm = z)

M
[6.17]

/

MX

m=1

�(Zm = z). [6.18]

But since we do not know the values of the latent variables Zm, we impute a distribution
qm in the E-step, which represents the degree of belief that word token wm was generated
from a n-gram of order zm,

qm(z) ,Pr(Zm = z | w1:m;�) [6.19]

=
p(wm | w1:m�1, Zm = z)⇥ p(z)P
z0 p(wm | w1:m�1, Zm = z0)⇥ p(z0)

[6.20]

/p⇤
z
(wm | w1:m�1)⇥ �z. [6.21]

In the M-step, � is computed by summing the expected counts under q,

�z /

MX

m=1

qm(z). [6.22]

A solution is obtained by iterating between updates to q and �. The complete algorithm
is shown in Algorithm 10.

Algorithm 10 Expectation-maximization for interpolated language modeling

1: procedure ESTIMATE INTERPOLATED n-GRAM (w1:M , {p⇤
n
}n21:nmax)

2: for z 2 {1, 2, . . . , nmax} do . Initialization
3: �z  

1
nmax

4: repeat
5: for m 2 {1, 2, . . . ,M} do . E-step
6: for z 2 {1, 2, . . . , nmax} do
7: qm(z) p⇤

z
(wm | w1:m�)⇥ �z

8: qm  Normalize(qm)

9: for z 2 {1, 2, . . . , nmax} do . M-step
10: �z  

1
M

P
M

m=1 qm(z)

11: until tired
12: return �

Jacob Eisenstein. Draft of November 13, 2018.
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Under contract with MIT Press, shared under CC-BY-NC-ND license.



Logistic word prediction
• No more counts. Model next-word as softmax over the 

vocabulary. 
• We can use anything to help predictions: features 

(Rosenfeld 1996) or neural nets (Bengio et al. 2003) to 
compose vu:
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h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.
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Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C( j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11 ), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11 ),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11 ) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11 ) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The
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3. Data Driven Clustering ([Jelinek 89, appendix C], [Jelinek 89, appendix D], [Brown et al. 90b],
[Kneser and Ney 91], [Suhm and Waibel 94]).

See [Rosenfeld 94b] for a more detailed exposition.

2.4 Intermediate Distance

Long-distance N-grams attempt to capture directly the dependence of the predicted word onN-1–grams which
are some distance back. For example, a distance-2 trigram predicts wi based on (wi 3 wi 2). As a special
case, distance-1 N-grams are the familiar conventional N-grams.

In [Huang et al. 93] we attempted to estimate the amount of information in long-distance bigrams. A
long-distance bigram was constructed for distance d = 1 . . . 10 1000, using the 1 million word Brown
Corpus as training data. The distance-1000 case was used as a control, since at that distance no significant
information was expected. For each such bigram, the training-set perplexity was computed. The latter is
an indication of the average mutual information between word wi and word wi d. As expected, we found
perplexity to be low for d = 1, and to increase significantly as we moved through d = 2 3 4 and 5. For
d = 6 . . . 10, training-set perplexity remained at about the same level2. See table 1. We concluded that
significant information exists in the last 5 words of the history.

distance 1 2 3 4 5 6 7 8 9 10 1000
PP 83 119 124 135 139 138 138 139 139 139 141

Table 1: Training-set perplexity of long-distance bigrams for various distances, based on 1 million words of
the Brown Corpus. The distance=1000 case was included as a control.

Long-distance N-grams are seriously deficient. Although they capture word-sequence correlations even
when the sequences are separated by distance d, they fail to appropriately merge training instances that are
based on different values of d. Thus they unnecessarily fragment the training data.

2.5 Long Distance (Triggers)

2.5.1 Evidence for Long Distance Information

Evidence for the significant amount of information present in the longer-distance history is found in the
following two experiments:

Long-Distance Bigrams. The previous section discusses the experiment on long-distance bigrams reported
in [Huang et al. 93]. As mentioned, training-set perplexity was found to be low for the conventional
bigram (d = 1), and to increase significantly as one moved through d = 2 3 4 and 5. For d = 6 . . . 10,
training-set perplexity remained at about the same level. But interestingly, that level was slightly yet
consistently below perplexity of the d = 1000 case (see table 1). We concluded that some information
indeed exists in the more distant past, but it is spread thinly across the entire history.

Shannon Game at IBM [Mercer and Roukos 92]. A “Shannon game” program was implemented at IBM,
where a person tries to predict the next word in a document while given access to the entire history
of the document. The performance of humans was compared to that of a trigram language model. In
particular, the cases where humans outsmarted the model were examined. It was found that in 40% of
these cases, the predicted word, or a word related to it, occurred in the history of the document.

2although below the perplexity of the d = 1000 case. See the following section.
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• Cognitive science & human behavioral evidence can inspire better NLP 
modeling

• Inspecting differences in two models’ performance (here, human-vs-machine; 
can also do machine-vs-machine)

[Rosenfeld 1996]
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Long-distance conditioning

Before attempting to design a trigger-based model, one should study what long distance factors have
significant effects on word probabilities. Obviously, some information about P(B) can be gained simply by
knowing that A had occurred. But can significantly more be gained by considering how recently A occurred,
or how many times?

We have studied these issues using the Wall Street Journal corpus of 38 million words. First, an index
file was created that contained, for every word, a record of all of its occurrences. Then, for any candidate
pair of words, we computed log cross product ratio, average mutual information (MI), and distance-based and
count-based co-occurrence statistics. The latter were used to draw graphs depicting detailed trigger relations.
Some illustrations are given in figs. 2 and 3. After using the program to manually browse through many

 1 2 3 4-10 11-25 26-50 51-100 101-200 201-500

P( SHARES )

501+

P( SHARES  |  ST OCK )

P( SHARES )

P( SHARES  | ~  ST OCK )

Figure 2: Probability of ’SHARES’ as a function of the distance from the last occurrence of ’STOCK’ in
the same document. The middle horizontal line is the unconditional probability. The top (bottom) line is the
probability of ’SHARES’ given that ’STOCK’ occurred (did not occur) before in the document.

hundreds of trigger pairs, we were able to draw the following general conclusions:

1. Different trigger pairs display different behavior, and hence should be modeled differently. More
detailed modeling should be used when the expected return is higher.

2. Self triggers (i.e. triggers of the form (A A)) are particularly powerful and robust. In fact, for more
than two thirds of the words, the highest-MI trigger proved to be the word itself. For 90% of the words,
the self-trigger was among the top 6 triggers.

3. Same-root triggers are also generally powerful, depending on the frequency of their inflection.

4. Most of the potential of triggers is concentrated in high-frequency words. (STOCK BOND) is indeed
much more useful than (BREST LITOVSK).

6

[Rosenfeld 1996]
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Recurrent neural networks

• Idea: extend a feedforward net to sequential data by 
iterating an NN at each position. 

• Theoretically, an RNN can learn any update function. 
(Represent any Turing machine!)
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Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).
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