
Unsupervised learning in NLP
(INLP ch. 5)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing

http://brenocon.com/cs685

https://people.cs.umass.edu/~brenocon/cs685_s21/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

WSD: do context words naturally cluster?

2

96 CHAPTER 5. LEARNING WITHOUT SUPERVISION

0 10 20 30 40
density of word group 1

0

20

40

d
e
n
s
it
y

o
f
w
o
rd

g
ro

u
p

2

Figure 5.1: Counts of words from two different context groups

bank, the immediate context might typically include words from one of the following two
groups:

1. financial, deposits, credit, lending, capital, markets, regulated, reserve, liquid, assets

2. land, water, geography, stream, river, flow, deposits, discharge, channel, ecology

Now consider a scatterplot, in which each point is a document containing the word bank.
The location of the document on the x-axis is the count of words in group 1, and the
location on the y-axis is the count for group 2. In such a plot, shown in Figure 5.1, two
“blobs” might emerge, and these blobs correspond to the different senses of bank.

Here’s a related scenario, from a different problem. Suppose you download thousands
of news articles, and make a scatterplot, where each point corresponds to a document:
the x-axis is the frequency of the group of words (hurricane, winds, storm); the y-axis is the
frequency of the group (election, voters, vote). This time, three blobs might emerge: one
for documents that are largely about a hurricane, another for documents largely about a
election, and a third for documents about neither topic.

These clumps represent the underlying structure of the data. But the two-dimensional
scatter plots are based on groupings of context words, and in real scenarios these word
lists are unknown. Unsupervised learning applies the same basic idea, but in a high-
dimensional space with one dimension for every context word. This space can’t be di-
rectly visualized, but the goal is the same: try to identify the underlying structure of the
observed data, such that there are a few clusters of points, each of which is internally
coherent. Clustering algorithms are capable of finding such structure automatically.

5.1.1 K-means clustering

Clustering algorithms assign each data point to a discrete cluster, zi 2 1, 2, . . .K. One of
the best known clustering algorithms is K-means, an iterative algorithm that maintains

Jacob Eisenstein. Draft of November 13, 2018.

96 CHAPTER 5. LEARNING WITHOUT SUPERVISION

Figure 5.1: Counts of words from two different context groups

bank, the immediate context might typically include words from one of the following two
groups:

1. financial, deposits, credit, lending, capital, markets, regulated, reserve, liquid, assets

2. land, water, geography, stream, river, flow, deposits, discharge, channel, ecology

Now consider a scatterplot, in which each point is a document containing the word bank.
The location of the document on the x-axis is the count of words in group 1, and the
location on the y-axis is the count for group 2. In such a plot, shown in Figure 5.1, two
“blobs” might emerge, and these blobs correspond to the different senses of bank.

Here’s a related scenario, from a different problem. Suppose you download thousands
of news articles, and make a scatterplot, where each point corresponds to a document:
the x-axis is the frequency of the group of words (hurricane, winds, storm); the y-axis is the
frequency of the group (election, voters, vote). This time, three blobs might emerge: one
for documents that are largely about a hurricane, another for documents largely about a
election, and a third for documents about neither topic.

These clumps represent the underlying structure of the data. But the two-dimensional
scatter plots are based on groupings of context words, and in real scenarios these word
lists are unknown. Unsupervised learning applies the same basic idea, but in a high-
dimensional space with one dimension for every context word. This space can’t be di-
rectly visualized, but the goal is the same: try to identify the underlying structure of the
observed data, such that there are a few clusters of points, each of which is internally
coherent. Clustering algorithms are capable of finding such structure automatically.

5.1.1 K-means clustering

Clustering algorithms assign each data point to a discrete cluster, zi 2 1, 2, . . .K. One of
the best known clustering algorithms is K-means, an iterative algorithm that maintains

Jacob Eisenstein. Draft of November 13, 2018.

bank

i ee a a

• Motivation: there's a LOT more unlabeled than
labeled data!

• Do documents or words naturally cluster?
• WSD: context words cluster around senses
• Documents: words cluster around topics

• Uses of unsup. NLP
• 1. Exploratory analysis
• 2. Unsupervised transfer: usually we have lots of

unlabeled data, but little labeled data.
• Learn language representations (word clusters,

embeddings) from unlabeled data, apply to supervised
model.

3

Unsup. Learning in NLP

of

t

A few methods

• Count-based, no "learning": Word-to-word
co-ocurrence in unlabeled data

• Pointwise mutual information (Church and
Hanks 1990)

• Count model-based: EM algorithm to
unsupervisedly learn Naive Bayes (related: K-
Means for GMMs)

• Gradient-based: word embedding models
(next week) and neural language models

4

t
I E

Clustering with (hard) EM
• How to learn a model without training data? How about fake it:

• Initialize: Randomly guess labels
• ** Learn model parameters as if those labels were true.
• Make predictions.
• Go back to ** and iterate.

• K-Means is an example for continuous data
• 1. Randomly initialize cluster centroids
• 2. Alternate until convergence:

• (“E”): Assign each example to closest centroid

• (“M”): Update centroids to means of these newly assigned examples

• K-Means is an instance of a probabilistic unsupervised learning
algorithm (Gaussian Mixture Model)

5

F

I

6

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

A

a

7

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

8

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

9

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

8D

10

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

s
a

11

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

i

so

Eady

12

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

do
I

13

Slides from UMass alum Victor
Lavrenko, U. Edinburgh:

https://www.youtube.com/watch?
v=_aWzGGNrcic

Latent-variable generative models

14

Text (Sometimes) latent quantity to help explain the
language you see

• Document category

• World context

• Grammatical category

• Semantic structure

• Real-valued embedding

Easy stuff

• Supervised learning: argmaxθ P(wtrain, ztrain | θ)
• Prediction (via posterior inference): P(z | winput, θ)

Unsupervised stuff with marginal inference

• Latent (unsupervised) learning: argmaxθ P(wtrain | θ)
• Language modeling (via marginal inference): P(winput | θ)

P (w, z | ✓)

Parameters

Multinomial Naive Bayes
• Parameters

• ɸk word distribution for each class k
• μ prior distribution over labels

• Generative story. for P(w,z|μ,ɸ)
For each document d:

• P(z): Draw label zd ~ Categ(μ)
• P(w|z): For t=1,2,...: Draw next word wd,t ~

Categ(ɸz)

15

Easy stuff

• Supervised learning: argmaxθ P(wtrain, ztrain | θ)
• Prediction (via posterior inference): P(z | winput, θ)

Unsupervised stuff with marginal inference

• Latent (unsupervised) learning: argmaxθ P(wtrain | θ)
• Language modeling (via marginal inference): P(winput | θ)

• Supervised
classification with
MNB:

• Training: known (w,z),
learn params

• Testing: fix params,
known w, want z

• Unsupervised learning
(soft clustering)

• known w, jointly learn z
and params

• Can learn latent
structure in data

16

1987 NYT data
one point per doc

“congress”, “religious”, “reagan”
probabilities per doc (normalized)

EM for Unsup. NB

• Iterate

• (E step): Infer Q(z) := P(z | w, μ,ɸ)

• Predict doc category posterior, from current model

• (M step): Learn new
 μ,ɸ := argmaxμ,ɸ EQ[log P(w,z | μ,ɸ)]

• From weighted relative frequency counting!

17

EM performance

• Guaranteed to find a locally maximum
likelihood solution. Guaranteed to converge.

• But can take a while

• Dependent on initialization

18

Johnson 2007, “Why doesn’t EM
find good HMM POS-taggers?”

H(T |Y) = H(T)� I(Y, T)
VI (Y, T) = H(Y |T) + H(T |Y)

As Meilǎ (2003) shows, VI is a metric on the space
of probability distributions whose value reflects the
divergence between the two distributions, and only
takes the value zero when the two distributions are
identical.

3 Maximum Likelihood via
Expectation-Maximization

There are several excellent textbook presentations of
Hidden Markov Models and the Forward-Backward
algorithm for Expectation-Maximization (Jelinek,
1997; Manning and Schütze, 1999; Bishop, 2006),
so we do not cover them in detail here. Conceptu-
ally, a Hidden Markov Model generates a sequence
of observations x = (x0, . . . , xn) (here, the words
of the corpus) by first using a Markov model to gen-
erate a sequence of hidden states y = (y0, . . . , yn)
(which will be mapped to POS tags during evalua-
tion as described above) and then generating each
word xi conditioned on its corresponding state yi.
We insert endmarkers at the beginning and ending
of the corpus and between sentence boundaries, and
constrain the estimator to associate endmarkers with
a state that never appears with any other observation
type (this means each sentence can be processed in-
dependently by first-order HMMs; these endmarkers
are ignored during evaluation).

In more detail, the HMM is specified by multi-
nomials �y and �y for each hidden state y, where
�y specifies the distribution over states following y
and �y specifies the distribution over observations x
given state y.

yi | yi�1 = y � Multi(�y)
xi | yi = y � Multi(�y)

(1)

We used the Forward-Backward algorithm to per-
form Expectation-Maximization, which is a proce-
dure that iteratively re-estimates the model param-
eters (�, �), converging on a local maximum of the
likelihood. Specifically, if the parameter estimate at
time � is (�(�),�(�)), then the re-estimated parame-
ters at time � + 1 are:

�(�+1)
y�|y = E[ny�,y]/E[ny] (2)

�(�+1)
x|y = E[nx,y]/E[ny]

6.95E+06

7.00E+06

7.05E+06

7.10E+06

7.15E+06

0 250 500 750 1000

–
lo

g
lik

el
ih

oo
d

Iteration

Figure 1: Variation in negative log likelihood with
increasing iterations for 10 EM runs from different
random starting points.

where nx,y is the number of times observation x oc-
curs with state y, ny�,y is the number of times state
y� follows y and ny is the number of occurences of
state y; all expectations are taken with respect to the
model (�(�),�(�)).

We took care to implement this and the other al-
gorithms used in this paper efficiently, since optimal
performance was often only achieved after several
hundred iterations. It is well-known that EM often
takes a large number of iterations to converge in like-
lihood, and we found this here too, as shown in Fig-
ure 1. As that figure makes clear, likelihood is still
increasing after several hundred iterations.

Perhaps more surprisingly, we often found dra-
matic changes in accuracy in the order of 5% occur-
ing after several hundred iterations, so we ran 1,000
iterations of EM in all of the experiments described
here; each run took approximately 2.5 days compu-
tation on a 3.6GHz Pentium 4. It’s well-known that
accuracy often decreases after the first few EM it-
erations (which we also observed); however in our
experiments we found that performance improves
again after 100 iterations and continues improving
roughly monotonically. Figure 2 shows how 1-to-1
accuracy varies with iteration during 10 runs from
different random starting points. Note that 1-to-1
accuracy at termination ranges from 0.38 to 0.45; a
spread of 0.07.

We obtained a dramatic speedup by working di-
rectly with probabilities and rescaling after each ob-
servation to avoid underflow, rather than working
with log probabilities (thanks to Yoshimasa Tsu-

298

EM pros/cons
• Works best for a simple model with rapid E/M-step

inference - like Naive Bayes

• Requires probabilistic modeling assumptions

• Dependent on initialization

• Many alternative methods (e.g. MCMC), but can similar issues
with local optima

• EM used for lots in NLP, esp. historically

• Machine translation

• HMM-based speech recognition

• Topic modeling, doc clustering

• At the moment, gradient-based learning for non-
probabilistic models (vanilla NNs or matrix factorization) is
more common. Note EM and prob. models can be mixed
with neural networks (cutting edge research area).

19

