
Linguistic classification
(INLP ch. 4)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing

http://brenocon.com/cs685

https://people.cs.umass.edu/~brenocon/cs685_s21/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685_s21/

Today

• Examples of cool language tasks
• Sentiment
• WSD

• Preprocessing and linguistic design decisions
• Agreement rates and annotation

2

Sentiment
• Often conceived of as polarity:

negative, neutral, positive
• Dislike/like, love/hate …

• Do you believe sentiment analysis?
• Overall sentiment of a tweet
• Stars in a review

• Targeted sentiment analysis:
• author’s attitude
• toward a particular concept (often, word in the text)

• Many, many variants: affective analysis, opinion
analysis, etc.

3

Word senses

4

4.2. WORD SENSE DISAMBIGUATION 73

where Ly is the lexicon for label y. Compared to the machine learning classifiers discussed
in the previous chapters, lexicon-based classification may seem primitive. However, su-
pervised machine learning relies on large annotated datasets, which are time-consuming
and expensive to produce. If the goal is to distinguish two or more categories in a new
domain, it may be simpler to start by writing down a list of words for each category.

An early lexicon was the General Inquirer (Stone, 1966). Today, popular sentiment lexi-
cons include SENTIWORDNET (Esuli and Sebastiani, 2006) and an evolving set of lexicons
from Liu (2015). For emotions and more fine-grained analysis, Linguistic Inquiry and Word
Count (LIWC) provides a set of lexicons (Tausczik and Pennebaker, 2010). The MPQA lex-
icon indicates the polarity (positive or negative) of 8221 terms, as well as whether they are
strongly or weakly subjective (Wiebe et al., 2005). A comprehensive comparison of senti-
ment lexicons is offered by Ribeiro et al. (2016). Given an initial seed lexicon, it is possible
to automatically expand the lexicon by looking for words that frequently co-occur with
words in the seed set (Hatzivassiloglou and McKeown, 1997; Qiu et al., 2011).

4.2 Word sense disambiguation

Consider the the following headlines:

(4.3) a. Iraqi head seeks arms
b. Prostitutes appeal to Pope
c. Drunk gets nine years in violin case2

These headlines are ambiguous because they contain words that have multiple mean-
ings, or senses. Word sense disambiguation is the problem of identifying the intended
sense of each word token in a document. Word sense disambiguation is part of a larger
field of research called lexical semantics, which is concerned with meanings of the words.

At a basic level, the problem of word sense disambiguation is to identify the correct
sense for each word token in a document. Part-of-speech ambiguity (e.g., noun versus
verb) is usually considered to be a different problem, to be solved at an earlier stage.
From a linguistic perspective, senses are not properties of words, but of lemmas, which
are canonical forms that stand in for a set of inflected words. For example, arm/N is a
lemma that includes the inflected form arms/N — the /N indicates that it we are refer-
ring to the noun, and not its homonym arm/V, which is another lemma that includes
the inflected verbs (arm/V, arms/V, armed/V, arming/V). Therefore, word sense disam-
biguation requires first identifying the correct part-of-speech and lemma for each token,

2These examples, and many more, can be found at http://www.ling.upenn.edu/˜beatrice/
humor/headlines.html

Under contract with MIT Press, shared under CC-BY-NC-ND license.

• Supervised WSD
• Use features/embeddings from neighboring

contextual words
• Is supervised WSD a realistic task?

5

Ling. preproc. decisions
• To define the symbolic units for either features or to

have neural embeddings, we must preprocess (e.g.
tokenize) the text somehow

• Preprocessing decisions encode linguistic assumptions!
• e.g. What is a word?
• Example

• Tokenize tweets by splitting text on regex [^a-zA-Z0-9]+
• => Among top-100 most common words

• p
• d

• Why? [Owoputi et al. 2013, section 4]

6

Tokenizers

7

4.3. DESIGN DECISIONS FOR TEXT CLASSIFICATION 77

Whitespace Isn’t Ahab, Ahab? ;)
Treebank Is n’t Ahab , Ahab ? ;)
Tweet Isn’t Ahab , Ahab ? ;)
TokTok (Dehdari, 2014) Isn ’ t Ahab , Ahab ? ;)

Figure 4.1: The output of four NLTK tokenizers, applied to the string Isn’t Ahab, Ahab? ;)

Tokenization

The first subtask for constructing a bag-of-words vector is tokenization: converting the
text from a sequence of characters to a sequence of word!tokens. A simple approach is
to define a subset of characters as whitespace, and then split the text on these tokens.
However, whitespace-based tokenization is not ideal: we may want to split conjunctions
like isn’t and hyphenated phrases like prize-winning and half-asleep, and we likely want
to separate words from commas and periods that immediately follow them. At the same
time, it would be better not to split abbreviations like U.S. and Ph.D. In languages with
Roman scripts, tokenization is typically performed using regular expressions, with mod-
ules designed to handle each of these cases. For example, the NLTK package includes a
number of tokenizers (Loper and Bird, 2002); the outputs of four of the better-known tok-
enizers are shown in Figure 4.1. Social media researchers have found that emoticons and
other forms of orthographic variation pose new challenges for tokenization, leading to the
development of special purpose tokenizers to handle these phenomena (O’Connor et al.,
2010).

Tokenization is a language-specific problem, and each language poses unique chal-
lenges. For example, Chinese does not include spaces between words, nor any other
consistent orthographic markers of word boundaries. A “greedy” approach is to scan the
input for character substrings that are in a predefined lexicon. However, Xue et al. (2003)
notes that this can be ambiguous, since many character sequences could be segmented in
multiple ways. Instead, he trains a classifier to determine whether each Chinese character,
or hanzi, is a word boundary. More advanced sequence labeling methods for word seg-
mentation are discussed in § 8.4. Similar problems can occur in languages with alphabetic
scripts, such as German, which does not include whitespace in compound nouns, yield-
ing examples such as Freundschaftsbezeigungen (demonstration of friendship) and Dilet-
tantenaufdringlichkeiten (the importunities of dilettantes). As Twain (1997) argues, “These
things are not words, they are alphabetic processions.” Social media raises similar problems
for English and other languages, with hashtags such as #TrueLoveInFourWords requiring
decomposition for analysis (Brun and Roux, 2014).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Word normalization
• Case normalization (even that can be lossy)
• Stemmers and lemmatizers: delete inflectional affixes

• Language specific!
• “Stemmers”: crude affix analyzers.
• “Lemmatizers”: trying to be smarter (more linguistically motivated).

• High quality lemmatization requires part-of-speech category —
requires contextual disambiguation!

• More generally: morphological analysis

8

78 CHAPTER 4. LINGUISTIC APPLICATIONS OF CLASSIFICATION

Original The Williams sisters are leaving this tennis centre
Porter stemmer the william sister are leav thi tenni centr
Lancaster stemmer the william sist ar leav thi ten cent
WordNet lemmatizer The Williams sister are leaving this tennis centre

Figure 4.2: Sample outputs of the Porter (1980) and Lancaster (Paice, 1990) stemmers, and
the WORDNET lemmatizer

Text normalization

After splitting the text into tokens, the next question is which tokens are really distinct.
Is it necessary to distinguish great, Great, and GREAT? Sentence-initial capitalization may
be irrelevant to the classification task. Going further, the complete elimination of case
distinctions will result in a smaller vocabulary, and thus smaller feature vectors. However,
case distinctions might be relevant in some situations: for example, apple is a delicious
pie filling, while Apple is a company that specializes in proprietary dongles and power
adapters.

For Roman script, case conversion can be performed using unicode string libraries.
Many scripts do not have case distinctions (e.g., the Devanagari script used for South
Asian languages, the Thai alphabet, and Japanese kana), and case conversion for all scripts
may not be available in every programming environment. (Unicode support is an im-
portant distinction between Python’s versions 2 and 3, and is a good reason for mi-
grating to Python 3 if you have not already done so. Compare the output of the code
"\à l\’hôtel".upper() in the two language versions.)

Case conversion is a type of text normalization, which refers to string transforma-
tions that remove distinctions that are irrelevant to downstream applications (Sproat et al.,
2001). Other forms of normalization include the standardization of numbers (e.g., 1,000 to
1000) and dates (e.g., August 11, 2015 to 2015/11/08). Depending on the application, it may
even be worthwhile to convert all numbers and dates to special tokens, !NUM and !DATE.
In social media, there are additional orthographic phenomena that may be normalized,
such as expressive lengthening, e.g., cooooool (Aw et al., 2006; Yang and Eisenstein, 2013).
Similarly, historical texts feature spelling variations that may need to be normalized to a
contemporary standard form (Baron and Rayson, 2008).

A more extreme form of normalization is to eliminate inflectional affixes, such as the
-ed and -s suffixes in English. On this view, whale, whales, and whaling all refer to the
same underlying concept, so they should be grouped into a single feature. A stemmer is
a program for eliminating affixes, usually by applying a series of regular expression sub-
stitutions. Character-based stemming algorithms are necessarily approximate, as shown
in Figure 4.2: the Lancaster stemmer incorrectly identifies -ers as an inflectional suffix of

Jacob Eisenstein. Draft of November 13, 2018.

N-grams
• Word n-grams: all (often overlapping) subsequences of length n

• Vary n: trade off coarse/generalizable vs. specific/sparse
• How big can you make n?

• For features, typically use progressively larger n-grams at once
• E.g. “up to 3-grams”: all 1-grams, and 2-grams, and 3-grams
• Option: Filter to grammatical phrases (e.g. POS patterns)? Depends

on data volume
• Character n-grams often work really well

• As word-internal features
• As alternative to word n-grams when word segmentation is

hard/wasteful (e.g. CJK, social media hashtag compounds, …)
• If you make ’n’ as high as the average word length in the

language, is this better or worse than having using word
unigrams?

9

General preproc tradeoff
• For many preproc or feature decisions, a

general tradeoff:
1. Overproduce fine-grained terms/features with
minimal normalization or filtering. Possibly highly
redundant.

2. Only produce a highly selective set of very
normalized terms/features.

• Supervised learning with lots of labeled data:
(1) tends to be better

• Low amounts of data and/or unsupervised
learning: (2) tends to be better

10

Where to get labels?
• Natural annotations

• Metadata - information associated with text
document, but not in text itself

• Clever patterns from text itself
• New human annotations

• Yourself
• "Friends & family"
• Hire people locally
• Hire people online

• Mechanical Turk — most commonly used
crowdsourcing site

• (For larger/more expensive tasks: Upwork/ODesk)

11

12

Where to get labels?
• Natural annotations

• Metadata - information associated with text
document, but not in text itself

• Clever patterns from text itself
• New human annotations

• Yourself
• Your friends
• Hire people locally
• Hire people online

• Mechanical Turk — most commonly used
crowdsourcing site

• (For larger/more expensive tasks: Upwork/ODesk)

13

14

https://www.mturk.com/

https://www.mturk.com/mturk/welcome

Annotation process
• To pilot a new task, requires an iterative

process
• Look at data to see what’s possible
• Conceptualize the task, try it yourself
• Write annotation guidelines
• Have annotators try to do it. Where do they

disagree? What feedback do they have?
• Revise guidelines and repeat

• If you don’t do this, your labeled data will have
lots of unclear, arbitrary, and implicit decisions
inside of it

15

• stopped here on 2/15

16

Annotation is paramount

• Supervised learning is the most reliably successful
approach to NLP and artificial intelligence more
generally.

• Alternative view: it’s human intelligence, through
the human-supplied training labels, that’s at the
heart of it. Supervised NLP merely extends a
noisier, less-accurate version to more data.

• If we still want it: we need a plan to get good
annotations!

17

Annotation process
• To pilot a new task, requires an iterative process

• Look at data to see what’s possible
• Conceptualize the task, try it yourself
• Write annotation guidelines
• Have annotators try to do it. Where do they disagree?

What feedback do they have?
• Revise guidelines, repeat, resolve disagreements

• If you don’t do this, your labeled data will have lots of
unclear, arbitrary, and implicit decisions inside of it

• (Also alternative processes, e.g. active learning:
simultaneously do annotation and model training. But
you still need smart human design & intervention!)

18

• How “real” is a task? Replicable? Reliability of annotations?

• How much do two humans agree on labels?

• Difficulty of task. Human training? Human motivation/effort?

• Goal: get the human performance upper bound

• If some classes predominate, raw agreement rate may be misleading

• Chance-adjusted agreement: Cohen kappa for a pair of human
annotators (see also Fleiss kappa, Krippendorff alpha…)

Interannotator agreement

19

po � pe
1� pe

Cohen’s kappa
po: observed agreement rate
pe: agreement rate by chance

• Reliability analysis: from the social sciences, especially
psychology, content analysis, communications, etc.

Exercise

• Let's collect annotations and check
agreement rates!

• See links

20

Do I have enough labels?
• For training, typically thousands of

annotations are necessary for
reasonable performance

• For evaluation, can get away with
fewer (amenable to traditional power
analysis)

• Exact amounts are difficult to know
in advance. Can do a learning
curve to estimate if more
annotations will be useful.

• (Open research question: how to
usefully make NLP models with ~10
or ~100 training examples. "Few-
shot learning")

21

Evaluation of NLP model
• Confusion matrix of counts of each pair

(gold standard label, predicted label)
• Several evaluation metrics

• Accuracy (misleading with class skew)
• For a single class:

• Precision, Recall and F1
• For multiclass: Macro-averaged F1

• Many different metrics out there
• Ranking metrics (MAP, ROC...): no need

to specify threshold for hard classif.
• Probabilistic calibration
• Kappa = chance-adjusted accuracy.

Typically used for inter-annotator
agreement instead of F1; there is no
principled reason why this is done.

22

