Neural Networks
(INLP ch. 3)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing
http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685 s21/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

some slides adapted from Mohit lyyer, Jordan
Boyd-Graber, Richard Socher, Eisenstein (2019)

http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685_s21/

Neural Networks in NLP

e Motivations:
 \Word sparsity => denser word representations
* Nonlinearity
e Models
 BoE / Deep Averaging
| earning
e Backprop
 Dropout

The Second Wave: NNs in NLP

e 9% of ACL paper titles/venues with “connectionist/connectionism”,
“parallel distributed”, “neural network”, or “deep learning”

e https://www.aclweb.org/anthology/

150
I
o

Count
100
|

O
O — OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
| | | | | | | |

1985 1990 1995 2000 2005 2010 2015 2020

min(d):max(d)

3

https://www.aclweb.org/anthology/

NN Text Classification

e (Goals:

e Avoid feature engineering

e (Generalize beyond indivic

® (General model architectu
for many different datasets (and tasks!)

® For medium-to-
datasets, deep

ual words
res that work well

arge labeled training
earning methods generally
outperform feature-based LogReg

® Alternate view of

Word sparsity

Bag-of-Words classifiers:

every word has a “one-hot” representation.

e Represent each word as a vector of zeros with a
single 1 identifying the index of the word

® DocC

BOW x = average O

vocabulary

- all words’ vectors

; movie = <0, 0, 0, O, 1, O>

hate fil
love
the

movie

film

m =<0,0,0,0,0, 1>

what are the issues
of representing a
word this way”?

Word embeddings

* Represent words with low(ish)-dimensional vectors called embeddings

* Today: word embeddings are the first “lookup” layer in an NN. Every word in

vocabulary has a vector — these are model parameters.

 |deally: semantically similar words get similar vectors. Or other semantic

properties??
King =
[0.23, 1.3, -0.3, 0.43]
man walked
0. @
o) '~.~* woman swam
king O O
“*. walking
gueen
Y O B
swimming

Male-Female Verb tense

Italy -~‘___~\~“-‘\\\N\‘_Madrid
Rome

Germany —-—~_______~___‘______
Berlin
Turkey ~—~‘_““-——_‘__‘~
Ankara

Moscow
Ottava

Tokyo

Vietnam Hanoi
China Beijing

Country-Capital

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural a really good book

network (§ 1 3 M=

what is deep learning”

f (input) = output

what is deep learning”

iInput

v

Neural Network

output

t
t

I I 'I u

Ma

e.

An

u

u u

Is

h vb(x)
—

X1

X,

X3

+1

Logistic Regression by Another Name: Map inputs to output

Input

Vector X ..

- Xd

> hw,b(x)

Activation

.

f(2)

1+ exp(—2)

pass through
nonlinear siagmoid

NN: Kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

NN: Kind of like several intermediate logregs

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

p—
hw,b(x)

Layer L,

NN: Kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

|

hy b(X)

|

Layer L,

Layer L,

what is deep learning”

input

nonlinear transformation

Neural Network

what is deep learning”

input

nonlinear transformation

Nonlinear activations

e “Sqguash functions”!

values

/. szesscs
7
’ —— sigmoid

tanh
- == RelLU

= |ogistic / Sigmoid

1
f(x) = 1
(x) e (1)
= tanh
f(x) = tanh(x) = — = —1
X)=1Tanni{x)=
14 e2x
(2)
s RelLU
0O for x<0
f(x)_{x for x>0

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

0.5 F

0.5

why nonlinearities’

N N N | N N N N | N N N N | N N N
1 -0.5 190 0.5

credit for figure:

| Christopher Olah

why nonlinearities’

20

/ “neuron”
(2)

Layer L, Layer L,

()= 80— (W + w2+ w2+)

we Will be
learning the x’s
and the W’s!

Layer L,

o) = 4 = (WD) + WD + WD 1 f9)

N matrix-vector notation...

hw.b(x)

hy, = f(Wrh;, + b)

Layer L,

by, = f(Wyx + b)

26

Dracula is a really good book!

neural
network

Positive

softmax function

® |ct’'s say | have 3 classes (e.qg., positive, neutral,
negative)

® use multiclass logreg with “cross product” features
between input vector x and 3 output classes. for every
class c, i have an associated weight vector B¢, then

P(y = c|x) =

28

softmax function

ex
x.
T

X 1S a vector

softmax(x) =

X IS dimension j of X

each dimension j of the softmaxed output
represents the probabillity of class

29

“bag of embeddings”

predict Positive affine transformation

! \

_ exp(W(av))
S exp(W (av))s

a really good ook
C1 C2 C3 Cs

lyyer et al,ACL 2015

deep averaging networks

out = softmax(W; - z,)

I I 22:f(W2'21)
nonlinear function

l A

21 — 1 - Qv

X

I _affine transformation

&7
ayv = _
1=1

/7\\

a really good ook
CH Co2 C3 C4

deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W3 2)

chain rule!!!
I 2o = f(Wa - 21)

.
I

/7\'\”

a really good ook
C1 Co C3 C4

oL JdL oJout dz, 0z dav
oc; odout 0z, 0z, dav oc;

ary = _
n

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL

=979
oW,

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL dL. 0out (322

oW, dout dz, oW,

a really good ook
C1 Co C3 C4

packpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL B ol. oout 0Z2 0Z1 oav
oc; 0out 0z, 0z, dav o,

oL oL oout oz,

oW, oout 9z, oW,

38 Rumelhart et al., 1 986

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book

d

deep learning frameworks make
building NNs super easy!

out = softmax(W, -z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
Take the mean embedding. Since padding results
1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really good book return logits

n

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :

self. model.train ()
. z1 = f(W1 - av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’ label’])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
batch loss = criterion (out,
av = —7’ batch[’label’])

batch loss.backward ()

1=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!

Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)

A

overfitting

model power

43

| 2 regularization

N
1 efvi
i—1 Zc:1€ ¢ k

0 represents all of the model’s parameters!

penalizing their norm leads to smaller weights
we are constraining the parameter space
we are putting a prior on our model

44

[Srivastava et al., 2014]

(b) After applying dropout.

45

Dropout for NNs

of neurons to O in the forward pass

%

Net

0
AT
No7AN

_ s“\

%N ».»‘5.?'

XN

N\ X X .,.51 4\‘
(3 NI
AN

randomly set p

a) Standard Neural

SAL A7
XL XL
A,
.‘\q .,? o\‘e .,? Q
/XKD /XKD
(‘% now%/‘&nﬁ,o/'

Why*

randomly set p% of neurons to O in the forward pass

— gS g tail -

—— (35 ClAWS /

— | iSChievous 00K

46 network can’t just rely on one neuron!

Addressing instability

® [raining can be unstable! Therefore some
tricks.

e |nitialization — random small but reasonable
values can help.

e [ayer normalization (very important for some
recent architectures)

® Since performance variance is high, you need
to evaluate multiple runs

e whether you're averaging or taking max
performance

e ¢sp for comparisons!

47

e A few unresolved questions about NNs in NLP

e Useful architectures?
e Many: Convolutional, Recurrent, Self/cross-attention

e Modular systems”?
e |nterpretability / explainability?
e |ncorporate prior knowledge?

e TJransferring information across datasets/
languages/etc?

® [hese are major questions for NLP modeling
right now!

48

