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Neural Networks in NLP

e Motivations:
* \Word sparsity => denser word representations

 Nonlinearity —_— e ————
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e Models
* BoE / Deep Averaging
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The Second Wave: NNs in NLP

e % of ACL paper titles/venues with “connectionist/connectionism”,

“parallel distributed”, “neur om@deep Ieaﬁrﬁ”\

e https://www.aclweb.org/antholoqy/ ‘ ©
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NN Text Classification
A poatleotean
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® (Goals:
Vi \quﬂd
o Av0|d feature engineering

o Generalize beyond individual words

ég General model architectures that work well

for many different datasets (and tasks!)
® For medium-to-large labeled training <§(0®S ??
a

datasets, deep learning methods generally

outperform feature-based LogReg
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L@mﬁ Word embeddings > ==~

* Represent words with low(ish)-dimensional vectors called embeddings ~—

* Today: word embeddings are the first “lookup” layer in an NN. Every word in
vocabulary has a vector — these are model parameters.

* |deally: semantically similar words get similar vectors. Or other semantic

properfies?®—_ _— — —
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composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents
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what is deep learning? /| /s
————
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what is deep learning”

input

Neural Network

'

output




Logistic Regression by Another Name: Map inputs to output




Logistic Regression by Another Name: Map inputs to output

X1
X,
> h,,(x)
X3
+1
Activation
Output
Input 1
P f(z) = T ep(—2)
expl—2z
Vector xq ... Xy f( W-x-+b)
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nonlinear sigmoid



NN: kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...




NN: kind of like several intermediate logregs

... which we can feed into another logistic regression function

It is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

hVMb(X)

Layer L,




NN: kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

l

hys(X)
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+1 Layer L,

Layer L,




what is deep learning”

input

Neural Network




what is deep learning”

input

nonlinear transformation




Nonlinear activations

e “Squash functions”!
_—

<

= Logistic / Sigmoid

values

w8 T D

—— sigmoid
= tanh
== RelU







why nonlinearities”?
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: credit for figure:
» Christopher Olah
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why nonlinearities?
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+1

Layer L,
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Layer L,
Layer L,
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we will be
learning the x’s
and the W’s!

+1

Layer L, Layer L,
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IN matrix-vector notation...

h’w.b(x)

Layer L,

hy, = f(Wohy + b)




Dracula is a really good book!

neural
network

Positive



softmax function

® |et’'s say | have 3 classes (e.g., positive, neutral,
negative)
® use multiclass logreg with “cross product” features

between input vector x and 3 output classes. for every
class ¢, i have an associated weight vector B¢, then

28



softmax function
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softmax(x) =
= Z j exj

d
X IS a vector XE HQ

X IS dimension j of x
g

each dimension j of the softmaxed output
represents the probability of class |
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“bag of embeddings”

% predict Positive affine transformation

a really  good book
C1 C2 C3 C4

i Iyyek et al,ACL 2/0/L_5\
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deep averaging networks

out = softmax(W; - z,)

1 BB
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e affine transformation

a really  good book
C1 C2 Cs C4



deep averaging networks

out = softmax@ %)

what are our model
M -/

parameters (i.e.,
l 21 = @ av)

weights)?

I/l? \;\l

a really  good book
C1 C2 Cs Ca



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==z
these parameters
' 2
given the loss L oo — F(W - at)
av = —
n

a really  good ook
C1 C2 Cs Ca



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==z
these parameters
' 2
given the loss L oo — F(W - at)
oL n
— =777 I o — NG
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a really  good ook
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deep averaging networks

out = softmax(W; - z,)

=
chain rule!! R\? S
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL II 2o = f(Wa-21)

=177
oW,
z1 = f(W7 - av)

a really  good book
C1 C2 Cs Ca



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)
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backpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL _ oL oout aZz 0Z1 oav
oc; oout 9z 0z, dav dc,
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oW, dout dz, oW,

38 Rumelhart et al., 1986



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def _ init_ (self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300) :
. 1= f(Wl ~av) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab_size = vocab_size
n c; self.emb_dim = emb_dim
av = — self.n_hidden_units = n_hidden_units
n self.embeddings = nn.Embedding(self.vocab_size,

/ =1 self.emb_dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n_hidden_units,
. . . self.n_hidden_units),
nn.ReLU(),
really good book nn.Linear (self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax ()



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,)

. z1 = f(W7 - av)

n

A

really good book
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n
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do a forward pass to compute prediction

def forward(self, batch, probs=False):

text = batch[’text’][’tokens’]

length = batch[’length’]

text_embed = self._word_embeddings (text)

# Take the mean embedding. Since padding results
# in zeros its safe to sum and divide by length

encoded = text_embed.sum(1l)

encoded /= lengths.view (text_embed.size (0), -1)

# Compute the network score predictions

logits = self.classifier (encoded)
if probs:

return self._softmax(logits)
else:

return logits



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,)

. z1 = f(W7 - av)

C;
av = —
n

i

really good book

do a backward pass to update weights

_run_epoch (self, batch_iter, train=True) :
self. model.train()
for batch in batch_iter:

model.zero_grad()
out = model (batches)
batch_loss = criterion (out,

batch[’ label’])
batch_loss.backward()
self.optimizer.step ()



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. 21 = f(Wy - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
C; @cch_loss = criterion (out,
av =

— N batch[’ label’])
i— batch_loss @
/f \\ self.optimizer—cstep ()
HE E I

really good book
that’s it! no need to compute

gradients by hand!



Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)
Tes’te“o(

A
m&overﬁtting
Training error

I\ >
model power

T =
N il

9
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L2 regularization

N
1 efvi
J(@):NEj—log< ~ C>+A§j02
] k

0 represents all of the model’s parameters!

penalizing their norm leads to smaller weights
we are constraining the parameter space
we are putting a prior on our model

44



Dropout for NNs

[Srivastava et al., 2014]

(b) After applying dropout.

of neurons to O in the forward pass
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Why?

randomly set p% of neurons to O in the forward pass

—gp  has a tail

—  \3S ClAWS /

—)  Mischievous look

46 network can’t just rely on one neuron!



Addressing instabillity

® [raining can be unstable! Therefore some
tricks.

e [nitialization — random small but reasonable
values can help.

e [ ayer normalization (very important for some
recent architectures)

® Since performance variance is high, you need
to evaluate multiple runs

e whether you're averaging or taking max
performance

e esp for comparisons!

47



e A few unresolved guestions about NNs in NLP

e Useful architectures?
e Many: Convolutional, Recurrent, Self/cross-attention

e Modular systems?
¢ [Interpretability / explainability?
e [ncorporate prior knowledge?

e Transferring information across datasets/
languages/etc?

® [hese are major questions for NLP modeling
right now!
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