Cays & g
N
Qp\ﬂ L

Neural Networks
(INLP ch. 3)

CS 685, Spring 2021

Advanced Topics in Natural Language Processing
http://brenocon.com/cs685
https://people.cs.umass.edu/~brenocon/cs685 s21/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

some slides adapted from Mohit lyyer, Jordan
Boyd-Graber, Richard Socher, Eisenstein (2019)

Neural Networks in NLP

e Motivations:
* \Word sparsity => denser word representations

 Nonlinearity —_— e ————

T e

e Models
* BoE / Deep Averaging

—~ ~

e L&aming
—
« Backprop éf’vj‘mﬁj

* Dropout
P _~ (Lf}}\ovwﬁw

The Second Wave: NNs in NLP

e % of ACL paper titles/venues with “connectionist/connectionism”,

“parallel distributed”, “neur om@deep Ieaﬁrﬁ”\

e https://www.aclweb.org/antholoqy/ ‘ ©

| e

table(d)

/_@ I I I I I I I
1985 1990 1995 2000 2005 2010 2015 2020

as.integer(names(table(d)))
3

NN Text Classification
A poatleotean
/ USe V\r7ﬂr"’J\‘5

® (Goals:
Vi \quﬂd
o Av0|d feature engineering

o Generalize beyond individual words

ég General model architectures that work well

for many different datasets (and tasks!)
® For medium-to-large labeled training <§(0®S ??
a

datasets, deep learning methods generally

outperform feature-based LogReg

Bow VRGh
- 99
Word sparsity\"= 7{r 20570
e Alternate view of Bag-of-Words Classifiers:“wh T
every word has a “one-hot” representation.
e Represent each WO@T’W a
/_si/rlgl\e/\ identifying the index of the word \"WV

e Doc BOWx average of all words’ vectors
vocabulary = \K&

i movie = <0, 0, O, 0O, % 0>

—
hate flm =<0, E? 0, 0,0, 1>
-
love @ T
(J"m n¢> the what are the issues
ﬁf | of representing a
~Qdls film word this way?

- Coweey/cfxe

hW'M((¢

—9 e

0:“4)0*\]\

Qi/}\gw
r\/WWTQ—

MU\ ng
e " o
92 v

L@mﬁ Word embeddings > ==~

* Represent words with low(ish)-dimensional vectors called embeddings ~—

* Today: word embeddings are the first “lookup” layer in an NN. Every word in
vocabulary has a vector — these are model parameters.

* |deally: semantically similar words get similar vectors. Or other semantic

properfies?®—_ _— — —

King =
0.23, 1.3, -0.3, 0.43] -
Italy Qnadrid
Germany ——— Rome
man walked Berlin
O O Turkey \
.~ of Ankara
®. I~ "N ‘ swam .
king ® @) Russla = Noscow
A walking '. Canada Ottawa
queen \\’ Japan —— o
X*
/ O Vietnam Hanoi
swimming China - Beijing
Male-Female Verb tense Country-Capital

/_/\ — N m

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

(s :

neural a really good book

network (| 1 B BE
— —

—

" i
cooo. oy
o)l

what is deep learning? /| /s
————

f (input) = outpu
= /&%

what is deep learning”

input

Neural Network

'

output

Logistic Regression by Another Name: Map inputs to output

Logistic Regression by Another Name: Map inputs to output

X1
X,
> h,,(x)
X3
+1
Activation
Output
Input 1
P f(z) = T ep(—2)
expl—2z
Vector xq ... Xy f(W-x-+b)
17
2.
pass through

nonlinear sigmoid

NN: kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

NN: kind of like several intermediate logregs

... which we can feed into another logistic regression function

It is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

hVMb(X)

Layer L,

NN: kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

l

hys(X)

l

+1 Layer L,

Layer L,

what is deep learning”

input

Neural Network

what is deep learning”

input

nonlinear transformation

Nonlinear activations

e “Squash functions”!
_—

<

= Logistic / Sigmoid

values

w8 T D

—— sigmoid
= tanh
== RelU

why nonlinearities”?

s

S

: credit for figure:
» Christopher Olah

1 0.5 190 0.5 1

why nonlinearities?

U ——

) (\\ ‘W\bf‘ﬂy\l\/ ?[@‘YWNM}\

ayer L,
L
ayer L,

L

(1))
b,
W1(:;)X3 +

|

W1(21)X2

I

(1)X1

Wi

gl

) —

e

+1

Layer L,

(1)
o xa+ b))
(1) + Wi
(2)—f(W2(.:)X1—|—W22 Xo

+1

Layer L,
Layer L,

+1

Layer L, Layer L,

)= &2 — (WD WDl WDl 417

we will be
learning the x’s
and the W’s!

+1

Layer L, Layer L,

)= 9 = (W82 80-+ w2+ w2+ 7)

IN matrix-vector notation...

h’w.b(x)

Layer L,

hy, = f(Wohy + b)

Dracula is a really good book!

neural
network

Positive

softmax function

® |et’'s say | have 3 classes (e.g., positive, neutral,
negative)
® use multiclass logreg with “cross product” features

between input vector x and 3 output classes. for every
class ¢, i have an associated weight vector B¢, then

28

softmax function

y e
y ¢ RO | D
MTJ)L\DA QWL/) X R SWK{?/(

softmax(x) =
= Z j exj

d
X IS a vector XE HQ

X IS dimension j of x
g

each dimension j of the softmaxed output
represents the probability of class |

E%D&WW(F)]JO - (P@:)'D/X>

“bag of embeddings”

% predict Positive affine transformation

a really good book
C1 C2 C3 C4

i Iyyek et al,ACL 2/0/L_5\

-) =

deep averaging networks

out = softmax(W; - z,)

1 BB

NOl ||i| \ear fU| |CtiO| |
VA f - av
I 1 %

e affine transformation

a really good book
C1 C2 Cs C4

deep averaging networks

out = softmax@ %)

what are our model
M -/

parameters (i.e.,
l 21 = @ av)

weights)?

I/l? \;\l

a really good book
C1 C2 Cs Ca

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==z
these parameters
' 2
given the loss L oo — F(W - at)
av = —
n

a really good ook
C1 C2 Cs Ca

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==z
these parameters
' 2
given the loss L oo — F(W - at)
oL n
— =777 I o — NG
()Cl- : n

I/l?\l [

a really good ook
C1 C2 Cs Ca

deep averaging networks

out = softmax(W; - z,)

=
chain rule!! R\? S

N == 2) A
oL oL oout aZz aZl oav w)

dc; dout 0z, oz, 0av dc; @@ﬂ”fl"w) Xw&&
=7 I) £ Y
=30
AN
i1 B B §

a really good book

C1 Co @ C4

<

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL II 2o = f(Wa-21)

=177
oW,
z1 = f(W7 - av)

a really good book
C1 C2 Cs Ca

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL AL dout 9z, -
()Wz OOUt aZZ 6W2 l

21 =
U_ —_—

/'\'\”
N

a really good ook
C1 C2 Cs Ca

backpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL _ oL oout aZz 0Z1 oav
oc; oout 9z 0z, dav dc,

oL oL dout oz

oW, dout dz, oW,

38 Rumelhart et al., 1986

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def _ init_ (self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300) :
. 1= f(Wl ~av) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab_size = vocab_size
n c; self.emb_dim = emb_dim
av = — self.n_hidden_units = n_hidden_units
n self.embeddings = nn.Embedding(self.vocab_size,

/ =1 self.emb_dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n_hidden_units,
. . . self.n_hidden_units),
nn.ReLU(),
really good book nn.Linear (self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax ()

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,)

. z1 = f(W7 - av)

n

A

really good book

G

n

T

do a forward pass to compute prediction

def forward(self, batch, probs=False):

text = batch[’text’][’tokens’]

length = batch[’length’]

text_embed = self._word_embeddings (text)

Take the mean embedding. Since padding results
in zeros its safe to sum and divide by length

encoded = text_embed.sum(1l)

encoded /= lengths.view (text_embed.size (0), -1)

Compute the network score predictions

logits = self.classifier (encoded)
if probs:

return self._softmax(logits)
else:

return logits

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,)

. z1 = f(W7 - av)

C;
av = —
n

i

really good book

do a backward pass to update weights

_run_epoch (self, batch_iter, train=True) :
self. model.train()
for batch in batch_iter:

model.zero_grad()
out = model (batches)
batch_loss = criterion (out,

batch[’ label’])
batch_loss.backward()
self.optimizer.step ()

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. 21 = f(Wy - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
C; @cch_loss = criterion (out,
av =

— N batch[’ label’])
i— batch_loss @
/f \\ self.optimizer—cstep ()
HE E I

really good book
that’s it! no need to compute

gradients by hand!

Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)
Tes’te“o(

A
m&overﬁtting
Training error

I\ >
model power

T =
N il

9

43

L2 regularization

N
1 efvi
J(@):NEj—log< ~ C>+A§j02
] k

0 represents all of the model’s parameters!

penalizing their norm leads to smaller weights
we are constraining the parameter space
we are putting a prior on our model

44

Dropout for NNs

[Srivastava et al., 2014]

(b) After applying dropout.

of neurons to O in the forward pass

N
Q B
._n_lu~ e
%) ORI &
N Y] &
= XK N 2
m s .«’40@00.’.«!00@0‘.’ o
R~ 2
Q ZRN LN =
O @’ XXSHAX 2
- AN A\
© =
|- ; S

45

Why?

randomly set p% of neurons to O in the forward pass

—gp has a tail

— \3S ClAWS /

—) Mischievous look

46 network can’t just rely on one neuron!

Addressing instabillity

® [raining can be unstable! Therefore some
tricks.

e [nitialization — random small but reasonable
values can help.

e [ayer normalization (very important for some
recent architectures)

® Since performance variance is high, you need
to evaluate multiple runs

e whether you're averaging or taking max
performance

e esp for comparisons!

47

e A few unresolved guestions about NNs in NLP

e Useful architectures?
e Many: Convolutional, Recurrent, Self/cross-attention

e Modular systems?
¢ [Interpretability / explainability?
e [ncorporate prior knowledge?

e Transferring information across datasets/
languages/etc?

® [hese are major questions for NLP modeling
right now!

48

