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Alice  talked  to  Bob.
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Alice saw Mary too. She talked to her.



• x: Text,  y: Sentiment label 
• x: Text,  y: Syntax tree 
• x: English text,  y: Chinese text translation 
• x: Book,  y: Major characters & their relationships
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NLP as linguistic prediction
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learning. For example, in a task like search, it may be useful to identify each word’s stem,
so that a system can more easily generalize across related terms such as whale, whales,
whalers, and whaling. (This issue is relatively benign in English, as compared to the many
other languages which include much more elaborate systems of prefixed and suffixes.)
Such features could be obtained from a hand-crafted resource, like a dictionary that maps
each word to a single root form. Alternatively, features can be obtained from the output of
a general-purpose language processing system, such as a parser or part-of-speech tagger,
which may itself be built on supervised machine learning.

Another synthesis of learning and knowledge is in model structure: building machine
learning models whose architectures are inspired by linguistic theories. For example, the
organization of sentences is often described as compositional, with meaning of larger
units gradually constructed from the meaning of their smaller constituents. This idea
can be built into the architecture of a deep neural network, which is then trained using
contemporary deep learning techniques (Dyer et al., 2016).

The debate about the relative importance of machine learning and linguistic knowl-
edge sometimes becomes heated. No machine learning specialist likes to be told that their
engineering methodology is unscientific alchemy;5 nor does a linguist want to hear that
the search for general linguistic principles and structures has been made irrelevant by big
data. Yet there is clearly room for both types of research: we need to know how far we
can go with end-to-end learning alone, while at the same time, we continue the search for
linguistic representations that generalize across applications, scenarios, and languages.
For more on the history of this debate, see Church (2011); for an optimistic view of the
potential symbiosis between computational linguistics and deep learning, see Manning
(2015).

1.2.2 Search and learning

Many natural language processing problems can be written mathematically in the form
of optimization,6

ŷ = argmax
y2Y(x)

 (x,y; ✓), [1.1]

where,

• x is the input, which is an element of a set X ;

• y is the output, which is an element of a set Y(x);
5Ali Rahimi argued that much of deep learning research was similar to “alchemy” in a presentation at

the 2017 conference on Neural Information Processing Systems. He was advocating for more learning theory,
not more linguistics.

6Throughout this text, equations will be numbered by square brackets, and linguistic examples will be
numbered by parentheses.
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• Learning: find a good θ from data 
(we we need learning at all?) 

• Modeling: design important ling. phenomena into Ψ 
• Reuse search/learning optimization methods for 

for many different NLP problems
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ŷ = argmax
y2Y(x)

 (x,y; ✓), [1.1]

where,

• x is the input, which is an element of a set X ;

• y is the output, which is an element of a set Y(x);
5Ali Rahimi argued that much of deep learning research was similar to “alchemy” in a presentation at

the 2017 conference on Neural Information Processing Systems. He was advocating for more learning theory,
not more linguistics.

6Throughout this text, equations will be numbered by square brackets, and linguistic examples will be
numbered by parentheses.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Params

Input 
(text)

Predicted 
output

Scorer (model)

Output 
candidatePossible 

outputs



NLP modeling
• Pred./Search:

5

1.2. THREE THEMES IN NATURAL LANGUAGE PROCESSING 7

learning. For example, in a task like search, it may be useful to identify each word’s stem,
so that a system can more easily generalize across related terms such as whale, whales,
whalers, and whaling. (This issue is relatively benign in English, as compared to the many
other languages which include much more elaborate systems of prefixed and suffixes.)
Such features could be obtained from a hand-crafted resource, like a dictionary that maps
each word to a single root form. Alternatively, features can be obtained from the output of
a general-purpose language processing system, such as a parser or part-of-speech tagger,
which may itself be built on supervised machine learning.

Another synthesis of learning and knowledge is in model structure: building machine
learning models whose architectures are inspired by linguistic theories. For example, the
organization of sentences is often described as compositional, with meaning of larger
units gradually constructed from the meaning of their smaller constituents. This idea
can be built into the architecture of a deep neural network, which is then trained using
contemporary deep learning techniques (Dyer et al., 2016).

The debate about the relative importance of machine learning and linguistic knowl-
edge sometimes becomes heated. No machine learning specialist likes to be told that their
engineering methodology is unscientific alchemy;5 nor does a linguist want to hear that
the search for general linguistic principles and structures has been made irrelevant by big
data. Yet there is clearly room for both types of research: we need to know how far we
can go with end-to-end learning alone, while at the same time, we continue the search for
linguistic representations that generalize across applications, scenarios, and languages.
For more on the history of this debate, see Church (2011); for an optimistic view of the
potential symbiosis between computational linguistics and deep learning, see Manning
(2015).

1.2.2 Search and learning

Many natural language processing problems can be written mathematically in the form
of optimization,6
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Linear classification models
• Assume classification problem: 

• Input text x 
• Output discrete yϵY, |Y|=K 

• Scoring function is a dot product of weight 
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14 CHAPTER 2. LINEAR TEXT CLASSIFICATION

To predict a label from a bag-of-words, we can assign a score to each word in the vo-
cabulary, measuring the compatibility with the label. For example, for the label FICTION,
we might assign a positive score to the word whale, and a negative score to the word
molybdenum. These scores are called weights, and they are arranged in a column vector ✓.

Suppose that you want a multiclass classifier, where K , |Y| > 2. For example, you
might want to classify news stories about sports, celebrities, music, and business. The goal
is to predict a label ŷ, given the bag of words x, using the weights ✓. For each label y 2 Y ,
we compute a score  (x, y), which is a scalar measure of the compatibility between the
bag-of-words x and the label y. In a linear bag-of-words classifier, this score is the vector
inner product between the weights ✓ and the output of a feature function f(x, y),

 (x, y) = ✓ · f(x, y) =
X

j

✓jfj(x, y). [2.1]

As the notation suggests, f is a function of two arguments, the word counts x and the
label y, and it returns a vector output. For example, given arguments x and y, element j
of this feature vector might be,

fj(x, y) =

(
xwhale, if y = FICTION

0, otherwise
[2.2]

This function returns the count of the word whale if the label is FICTION, and it returns zero
otherwise. The index j depends on the position of whale in the vocabulary, and of FICTION
in the set of possible labels. The corresponding weight ✓j then scores the compatibility of
the word whale with the label FICTION.1 A positive score means that this word makes the
label more likely.

The output of the feature function can be formalized as a vector:

f(x, y = 1) = [x; 0; 0; . . . ; 0| {z }
(K�1)⇥V

] [2.3]

f(x, y = 2) = [0; 0; . . . ; 0| {z }
V

; x; 0; 0; . . . ; 0| {z }
(K�2)⇥V

] [2.4]

f(x, y = K) = [0; 0; . . . ; 0| {z }
(K�1)⇥V

; x], [2.5]

where [0; 0; . . . ; 0| {z }
(K�1)⇥V

] is a column vector of (K � 1) ⇥ V zeros, and the semicolon indicates

vertical concatenation. For each of the K possible labels, the feature function returns a
1In practice, both f and ✓ may be implemented as a dictionary rather than vectors, so that it is not

necessary to explicitly identify j. In such an implementation, the tuple (whale, FICTION) acts as a key in both
dictionaries; the values in f are feature counts, and the values in ✓ are weights.

Jacob Eisenstein. Draft of November 13, 2018.
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Figure 2.1: The bag-of-words and feature vector representations, for a hypothetical text
classification task.

associated dictionary. For example,3

✓(E,bicycle) =1 ✓(S,bicycle) =0

✓(E,bicicleta) =0 ✓(S,bicicleta) =1

✓(E,con) =1 ✓(S,con) =1

✓(E,ordinateur) =0 ✓(S,ordinateur) =0.

Similarly, if we want to distinguish positive and negative sentiment, we could use posi-
tive and negative sentiment lexicons (see § 4.1.2), which are defined by social psycholo-
gists (Tausczik and Pennebaker, 2010).

But it is usually not easy to set classification weights by hand, due to the large number
of words and the difficulty of selecting exact numerical weights. Instead, we will learn the
weights from data. Email users manually label messages as SPAM; newspapers label their
own articles as BUSINESS or STYLE. Using such instance labels, we can automatically
acquire weights using supervised machine learning. This chapter will discuss several
machine learning approaches for classification. The first is based on probability. For a
review of probability, consult Appendix A.

3In this notation, each tuple (language, word) indexes an element in ✓, which remains a vector.

Jacob Eisenstein. Draft of November 13, 2018.

• x is a vector, representing 
counts of words in the text 

• Vocabulary V: set of all word 
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• Vocab size V = |V| 
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• BOW ignores order 
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weights for each possible 
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vertical concatenation. For each of the K possible labels, the feature function returns a
1In practice, both f and ✓ may be implemented as a dictionary rather than vectors, so that it is not
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Jacob Eisenstein. Draft of November 13, 2018.
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associated dictionary. For example,3
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Jacob Eisenstein. Draft of November 13, 2018.
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in the set of possible labels. The corresponding weight ✓j then scores the compatibility of
the word whale with the label FICTION.1 A positive score means that this word makes the
label more likely.

The output of the feature function can be formalized as a vector:

f(x, y = 1) = [x; 0; 0; . . . ; 0| {z }
(K�1)⇥V

] [2.3]

f(x, y = 2) = [0; 0; . . . ; 0| {z }
V

; x; 0; 0; . . . ; 0| {z }
(K�2)⇥V

] [2.4]

f(x, y = K) = [0; 0; . . . ; 0| {z }
(K�1)⇥V

; x], [2.5]

where [0; 0; . . . ; 0| {z }
(K�1)⇥V

] is a column vector of (K � 1) ⇥ V zeros, and the semicolon indicates

vertical concatenation. For each of the K possible labels, the feature function returns a
1In practice, both f and ✓ may be implemented as a dictionary rather than vectors, so that it is not

necessary to explicitly identify j. In such an implementation, the tuple (whale, FICTION) acts as a key in both
dictionaries; the values in f are feature counts, and the values in ✓ are weights.

Jacob Eisenstein. Draft of November 13, 2018.
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How to set parameters?
• Could use deterministic 1 and 0 weights —  

implicit in lexicon/dictionary/keyword methods 
(e.g. racial slur blacklist, sentiment lexicons, etc.) 

• But if you have labeled data, typically 
supervised learning is better. 

• Labeled data:  “gold-standard” (text, label) pairs
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2.2 Naı̈ve Bayes

The joint probability of a bag of words x and its true label y is written p(x, y). Suppose
we have a dataset of N labeled instances, {(x(i), y(i))}N

i=1, which we assume are indepen-
dent and identically distributed (IID) (see § A.3). Then the joint probability of the entire
dataset, written p(x(1:N), y(1:N)), is equal to

Q
N

i=1 p
X,Y

(x(i), y(i)).4

What does this have to do with classification? One approach to classification is to set
the weights ✓ so as to maximize the joint probability of a training set of labeled docu-
ments. This is known as maximum likelihood estimation:

✓̂ = argmax
✓

p(x(1:N), y(1:N); ✓) [2.8]

= argmax
✓

NY

i=1

p(x(i), y(i); ✓) [2.9]

= argmax
✓

NX

i=1

log p(x(i), y(i); ✓). [2.10]

The notation p(x(i), y(i); ✓) indicates that ✓ is a parameter of the probability function. The
product of probabilities can be replaced by a sum of log-probabilities because the log func-
tion is monotonically increasing over positive arguments, and so the same ✓ will maxi-
mize both the probability and its logarithm. Working with logarithms is desirable because
of numerical stability: on a large dataset, multiplying many probabilities can underflow
to zero.5

The probability p(x(i), y(i); ✓) is defined through a generative model — an idealized
random process that has generated the observed data.6 Algorithm 1 describes the gener-
ative model underlying the Naı̈ve Bayes classifier, with parameters ✓ = {µ,�}.

• The first line of this generative model encodes the assumption that the instances are
mutually independent: neither the label nor the text of document i affects the label
or text of document j.7 Furthermore, the instances are identically distributed: the

4The notation pX,Y (x(i), y(i)) indicates the joint probability that random variables X and Y take the
specific values x(i) and y(i) respectively. The subscript will often be omitted when it is clear from context.
For a review of random variables, see Appendix A.

5Throughout this text, you may assume all logarithms and exponents are base 2, unless otherwise indi-
cated. Any reasonable base will yield an identical classifier, and base 2 is most convenient for working out
examples by hand.

6Generative models will be used throughout this text. They explicitly define the assumptions underlying
the form of a probability distribution over observed and latent variables. For a readable introduction to
generative models in statistics, see Blei (2014).

7Can you think of any cases in which this assumption is too strong?

Under contract with MIT Press, shared under CC-BY-NC-ND license.

• Two linear, probabilistic models today 
• Naive Bayes 
• Logistic Regression



Naive Bayes
• Assume a model of both text and labels 

(each doc i.i.d.)
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The probability p(x(i), y(i); ✓) is defined through a generative model — an idealized
random process that has generated the observed data.6 Algorithm 1 describes the gener-
ative model underlying the Naı̈ve Bayes classifier, with parameters ✓ = {µ,�}.

• The first line of this generative model encodes the assumption that the instances are
mutually independent: neither the label nor the text of document i affects the label
or text of document j.7 Furthermore, the instances are identically distributed: the

4The notation pX,Y (x(i), y(i)) indicates the joint probability that random variables X and Y take the
specific values x(i) and y(i) respectively. The subscript will often be omitted when it is clear from context.
For a review of random variables, see Appendix A.

5Throughout this text, you may assume all logarithms and exponents are base 2, unless otherwise indi-
cated. Any reasonable base will yield an identical classifier, and base 2 is most convenient for working out
examples by hand.

6Generative models will be used throughout this text. They explicitly define the assumptions underlying
the form of a probability distribution over observed and latent variables. For a readable introduction to
generative models in statistics, see Blei (2014).

7Can you think of any cases in which this assumption is too strong?
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• p(x,y) is a generative model: has a story of how both the label and 
document text was generated 
• generating text is a.k.a. language model — other LMs are 

used a lot in NLP 
• Once we have a model, we can do: 

1. Learning: fit p(x,y)’s parameters to training data (using MLE) 
2. Prediction (“Search”): infer labels on new documents (using 

Bayes Rule)
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dataset, written p(x(1:N), y(1:N)), is equal to

Q
N

i=1 p
X,Y

(x(i), y(i)).4

What does this have to do with classification? One approach to classification is to set
the weights ✓ so as to maximize the joint probability of a training set of labeled docu-
ments. This is known as maximum likelihood estimation:

✓̂ = argmax
✓

p(x(1:N), y(1:N); ✓) [2.8]

= argmax
✓

NY

i=1

p(x(i), y(i); ✓) [2.9]

= argmax
✓

NX

i=1

log p(x(i), y(i); ✓). [2.10]

The notation p(x(i), y(i); ✓) indicates that ✓ is a parameter of the probability function. The
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mize both the probability and its logarithm. Working with logarithms is desirable because
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The probability p(x(i), y(i); ✓) is defined through a generative model — an idealized
random process that has generated the observed data.6 Algorithm 1 describes the gener-
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• The first line of this generative model encodes the assumption that the instances are
mutually independent: neither the label nor the text of document i affects the label
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4The notation pX,Y (x(i), y(i)) indicates the joint probability that random variables X and Y take the
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NB generative model

• Types vs. Tokens 
• Generative probability notation: 

• a ~ Distrib(theta):  “Random variable a is sampled according 
to distribution Distrib, parameterized by theta.” 

• Parameters 
• μk: prior probability of class k 
• ɸk,w: probability word w gets generated under doc class k 

• “Naive”: each word token is generated independently.
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Algorithm 2 Alternative generative process for the Naı̈ve Bayes classification model

for Instance i 2 {1, 2, . . . , N} do:
Draw the label y(i) ⇠ Categorical(µ);
for Token m 2 {1, 2, . . . ,Mi} do:

Draw the token w(i)
m | y(i) ⇠ Categorical(�

y(i)).

Sometimes it is useful to think of instances as counts of types, x; other times, it is
better to think of them as sequences of tokens, w. If the tokens are generated from a
model that assumes conditional independence, then these two views lead to probability
models that are identical, except for a scaling factor that does not depend on the label or
the parameters.

2.2.2 Prediction

The Naı̈ve Bayes prediction rule is to choose the label y which maximizes log p(x, y; µ,�):

ŷ = argmax
y

log p(x, y; µ,�) [2.14]

= argmax
y

log p(x | y; �) + log p(y; µ) [2.15]

Now we can plug in the probability distributions from the generative story.

log p(x | y; �) + log p(y; µ) = log

2

4B(x)
VY

j=1

�
xj

y,j

3

5 + log µy [2.16]

= logB(x) +
VX

j=1

xj log �y,j + log µy [2.17]

= logB(x) + ✓ · f(x, y), [2.18]

where

✓ = [✓(1); ✓(2); . . . ; ✓(K)] [2.19]

✓(y) = [log �y,1; log �y,2; . . . ; log �y,V ; logµy] [2.20]

The feature function f(x, y) is a vector of V word counts and an offset, padded by
zeros for the labels not equal to y (see Equations 2.3-2.5, and Figure 2.1). This construction
ensures that the inner product ✓ · f(x, y) only activates the features whose weights are
in ✓(y). These features and weights are all we need to compute the joint log-probability
log p(x, y) for each y. This is a key point: through this notation, we have converted the
problem of computing the log-likelihood for a document-label pair (x, y) into the compu-
tation of a vector inner product.

Jacob Eisenstein. Draft of November 13, 2018.
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Algorithm 1 Generative process for the Naı̈ve Bayes classification model

for Instance i 2 {1, 2, . . . , N} do:
Draw the label y(i) ⇠ Categorical(µ);
Draw the word counts x(i)

| y(i) ⇠ Multinomial(�
y(i)).

distributions over the label y(i) and the text x(i) (conditioned on y(i)) are the same
for all instances i. In other words, we make the assumption that every document
has the same distribution over labels, and that each document’s distribution over
words depends only on the label, and not on anything else about the document. We
also assume that the documents don’t affect each other: if the word whale appears
in document i = 7, that does not make it any more or less likely that it will appear
again in document i = 8.

• The second line of the generative model states that the random variable y(i) is drawn
from a categorical distribution with parameter µ. Categorical distributions are like
weighted dice: the column vector µ = [µ1;µ2; . . . ;µK ] gives the probabilities of
each label, so that the probability of drawing label y is equal to µy. For example, if
Y = {POSITIVE, NEGATIVE, NEUTRAL}, we might have µ = [0.1; 0.7; 0.2]. We requireP

y2Y µy = 1 and µy � 0, 8y 2 Y : each label’s probability is non-negative, and the
sum of these probabilities is equal to one. 8

• The third line describes how the bag-of-words counts x(i) are generated. By writing
x(i)

| y(i), this line indicates that the word counts are conditioned on the label, so
that the joint probability is factored using the chain rule,

p
X,Y

(x(i), y(i)) = p
X|Y (x(i)

| y(i)) ⇥ p
Y

(y(i)). [2.11]

The specific distribution p
X|Y is the multinomial, which is a probability distribu-

tion over vectors of non-negative counts. The probability mass function for this
distribution is:

pmult(x; �) =B(x)
VY

j=1

�
xj

j
[2.12]

B(x) =

⇣P
V

j=1 xj
⌘
!

Q
V

j=1(xj !)
. [2.13]

8Formally, we require µ 2 �K�1, where �K�1 is the K � 1 probability simplex, the set of all vectors of
K nonnegative numbers that sum to one. Because of the sum-to-one constraint, there are K � 1 degrees of
freedom for a vector of size K.

Jacob Eisenstein. Draft of November 13, 2018.



NB prediction
• First assume we have parameters. How do we predict 

the label given text?  Chose the one with highest 
posterior probability p(y | x) = p(x, y) / p(x)
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Algorithm 2 Alternative generative process for the Naı̈ve Bayes classification model

for Instance i 2 {1, 2, . . . , N} do:
Draw the label y(i) ⇠ Categorical(µ);
for Token m 2 {1, 2, . . . ,Mi} do:
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m | y(i) ⇠ Categorical(�

y(i)).

Sometimes it is useful to think of instances as counts of types, x; other times, it is
better to think of them as sequences of tokens, w. If the tokens are generated from a
model that assumes conditional independence, then these two views lead to probability
models that are identical, except for a scaling factor that does not depend on the label or
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2.2.2 Prediction
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log p(x, y) for each y. This is a key point: through this notation, we have converted the
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Jacob Eisenstein. Draft of November 13, 2018.

• This can be shown to be a linear model (see text). 
• Parameters = log probs of words and class priors 
• Features = count of word under candidate class; candidate class



NB learning
• Intuitively, relative frequency estimation 

sounds good:
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2.2.3 Estimation

The parameters of the categorical and multinomial distributions have a simple interpre-
tation: they are vectors of expected frequencies for each possible event. Based on this
interpretation, it is tempting to set the parameters empirically,

�y,j =
count(y, j)

P
V

j0=1 count(y, j0)
=

P
i:y(i)=y

x(i)
j

P
V

j0=1

P
i:y(i)=y

x(i)
j0

, [2.21]

where count(y, j) refers to the count of word j in documents with label y.

Equation 2.21 defines the relative frequency estimate for �. It can be justified as a
maximum likelihood estimate: the estimate that maximizes the probability p(x(1:N), y(1:N); ✓).
Based on the generative model in Algorithm 1, the log-likelihood is,

L(�,µ) =
NX

i=1

log pmult(x
(i); �

y(i)) + log pcat(y
(i); µ), [2.22]

which is now written as a function L of the parameters � and µ. Let’s continue to focus
on the parameters �. Since p(y) is constant with respect to �, we can drop it:

L(�) =
NX

i=1

log pmult(x
(i); �

y(i)) =
NX

i=1

logB(x(i)) +
VX

j=1

x(i)
j

log �
y(i),j , [2.23]

where B(x(i)) is constant with respect to �.

Maximum-likelihood estimation chooses � to maximize the log-likelihood L. How-
ever, the solution must obey the following constraints:

VX

j=1

�y,j = 1 8y [2.24]

These constraints can be incorporated by adding a set of Lagrange multipliers to the objec-
tive (see Appendix B for more details). To solve for each ✓y, we maximize the Lagrangian,

`(�y) =
X

i:y(i)=y

VX

j=1

x(i)
j

log �y,j � �(
VX

j=1

�y,j � 1). [2.25]

Differentiating with respect to the parameter �y,j yields,

@`(�y)

@�y,j

=
X

i:y(i)=y

x(i)
j
/�y,j � �. [2.26]

Under contract with MIT Press, shared under CC-BY-NC-ND license.

• This has a deeper theoretical basis!



NB learning: MLE
• Maximum Likelihood Estimation: choose params 

that give highest likelihood to the training data
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2.2 Naı̈ve Bayes

The joint probability of a bag of words x and its true label y is written p(x, y). Suppose
we have a dataset of N labeled instances, {(x(i), y(i))}N

i=1, which we assume are indepen-
dent and identically distributed (IID) (see § A.3). Then the joint probability of the entire
dataset, written p(x(1:N), y(1:N)), is equal to

Q
N

i=1 p
X,Y

(x(i), y(i)).4

What does this have to do with classification? One approach to classification is to set
the weights ✓ so as to maximize the joint probability of a training set of labeled docu-
ments. This is known as maximum likelihood estimation:

✓̂ = argmax
✓

p(x(1:N), y(1:N); ✓) [2.8]

= argmax
✓

NY

i=1

p(x(i), y(i); ✓) [2.9]

= argmax
✓

NX

i=1

log p(x(i), y(i); ✓). [2.10]

The notation p(x(i), y(i); ✓) indicates that ✓ is a parameter of the probability function. The
product of probabilities can be replaced by a sum of log-probabilities because the log func-
tion is monotonically increasing over positive arguments, and so the same ✓ will maxi-
mize both the probability and its logarithm. Working with logarithms is desirable because
of numerical stability: on a large dataset, multiplying many probabilities can underflow
to zero.5

The probability p(x(i), y(i); ✓) is defined through a generative model — an idealized
random process that has generated the observed data.6 Algorithm 1 describes the gener-
ative model underlying the Naı̈ve Bayes classifier, with parameters ✓ = {µ,�}.

• The first line of this generative model encodes the assumption that the instances are
mutually independent: neither the label nor the text of document i affects the label
or text of document j.7 Furthermore, the instances are identically distributed: the

4The notation pX,Y (x(i), y(i)) indicates the joint probability that random variables X and Y take the
specific values x(i) and y(i) respectively. The subscript will often be omitted when it is clear from context.
For a review of random variables, see Appendix A.

5Throughout this text, you may assume all logarithms and exponents are base 2, unless otherwise indi-
cated. Any reasonable base will yield an identical classifier, and base 2 is most convenient for working out
examples by hand.

6Generative models will be used throughout this text. They explicitly define the assumptions underlying
the form of a probability distribution over observed and latent variables. For a readable introduction to
generative models in statistics, see Blei (2014).

7Can you think of any cases in which this assumption is too strong?
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• Choose ɸ,μ to maximize log-likelihood
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2.2.3 Estimation

The parameters of the categorical and multinomial distributions have a simple interpre-
tation: they are vectors of expected frequencies for each possible event. Based on this
interpretation, it is tempting to set the parameters empirically,

�y,j =
count(y, j)

P
V

j0=1 count(y, j0)
=

P
i:y(i)=y

x(i)
j

P
V

j0=1

P
i:y(i)=y

x(i)
j0

, [2.21]

where count(y, j) refers to the count of word j in documents with label y.

Equation 2.21 defines the relative frequency estimate for �. It can be justified as a
maximum likelihood estimate: the estimate that maximizes the probability p(x(1:N), y(1:N); ✓).
Based on the generative model in Algorithm 1, the log-likelihood is,

L(�,µ) =
NX

i=1

log pmult(x
(i); �

y(i)) + log pcat(y
(i); µ), [2.22]

which is now written as a function L of the parameters � and µ. Let’s continue to focus
on the parameters �. Since p(y) is constant with respect to �, we can drop it:

L(�) =
NX

i=1

log pmult(x
(i); �

y(i)) =
NX

i=1

logB(x(i)) +
VX

j=1

x(i)
j

log �
y(i),j , [2.23]

where B(x(i)) is constant with respect to �.

Maximum-likelihood estimation chooses � to maximize the log-likelihood L. How-
ever, the solution must obey the following constraints:

VX

j=1

�y,j = 1 8y [2.24]

These constraints can be incorporated by adding a set of Lagrange multipliers to the objec-
tive (see Appendix B for more details). To solve for each ✓y, we maximize the Lagrangian,

`(�y) =
X

i:y(i)=y

VX

j=1

x(i)
j

log �y,j � �(
VX

j=1

�y,j � 1). [2.25]

Differentiating with respect to the parameter �y,j yields,

@`(�y)

@�y,j

=
X

i:y(i)=y

x(i)
j
/�y,j � �. [2.26]
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• Under the sum-to-1 constraints
VX

j

�y,j = 1 8y
KX

k

µk = 1

• Calculus with Lagrange multipliers 
===>  intuitive relative frequency estimates!



Bias-variance tradeoffs

• Does MLE overfit or underfit? 
• Laplace smoothing: add a pseudocount,
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The solution is obtained by setting each element in this vector of derivatives equal to zero,

��y,j =
X

i:y(i)=y

x(i)
j

[2.27]

�y,j /

X

i:y(i)=y

x(i)
j

=
NX

i=1

�
⇣
y(i) = y

⌘
x(i)
j

= count(y, j), [2.28]

where �
�
y(i) = y

�
is a delta function, also sometimes called an indicator function, which

returns one if y(i) = y. The symbol / indicates that �y,j is proportional to the right-hand
side of the equation.

Equation 2.28 shows three different notations for the same thing: a sum over the word
counts for all documents i such that the label y(i) = y. This gives a solution for each
�y up to a constant of proportionality. Now recall the constraint

P
V

j=1 �y,j = 1, which
arises because �y represents a vector of probabilities for each word in the vocabulary.
This constraint leads to an exact solution, which does not depend on �:

�y,j =
count(y, j)

P
V

j0=1 count(y, j0)
. [2.29]

This is equal to the relative frequency estimator from Equation 2.21. A similar derivation
gives µy /

P
N

i=1 �
�
y(i) = y

�
.

2.2.4 Smoothing

With text data, there are likely to be pairs of labels and words that never appear in the
training set, leaving �y,j = 0. For example, the word molybdenum may have never yet
appeared in a work of fiction. But choosing a value of �FICTION,molybdenum = 0 would allow
this single feature to completely veto a label, since p(FICTION | x) = 0 if xmolybdenum > 0.

This is undesirable, because it imposes high variance: depending on what data hap-
pens to be in the training set, we could get vastly different classification rules. One so-
lution is to smooth the probabilities, by adding a “pseudocount” of ↵ to each count, and
then normalizing.

�y,j =
↵ + count(y, j)

V ↵ +
P

V

j0=1 count(y, j0)
[2.30]

This is called Laplace smoothing.11 The pseudocount ↵ is a hyperparameter, because it
controls the form of the log-likelihood function, which in turn drives the estimation of �.

11Laplace smoothing has a Bayesian justification, in which the generative model is extended to include �
as a random variable. The resulting distribution over � depends on both the data (x and y) and the prior
probability p(�;↵). The corresponding estimate of � is called maximum a posteriori, or MAP. This is in
contrast with maximum likelihood, which depends only on the data.

Jacob Eisenstein. Draft of November 13, 2018.

• (Why Vα ?) 
• α=>large  ==> ?



What about class priors?

• μ is set to class frequencies in training data.  
Is this realistic? 

• [See our paper! Keith and O’Connor, 2018]
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2.2.3 Estimation

The parameters of the categorical and multinomial distributions have a simple interpre-
tation: they are vectors of expected frequencies for each possible event. Based on this
interpretation, it is tempting to set the parameters empirically,

�y,j =
count(y, j)

P
V

j0=1 count(y, j0)
=

P
i:y(i)=y

x(i)
j

P
V

j0=1

P
i:y(i)=y

x(i)
j0

, [2.21]

where count(y, j) refers to the count of word j in documents with label y.

Equation 2.21 defines the relative frequency estimate for �. It can be justified as a
maximum likelihood estimate: the estimate that maximizes the probability p(x(1:N), y(1:N); ✓).
Based on the generative model in Algorithm 1, the log-likelihood is,

L(�,µ) =
NX

i=1

log pmult(x
(i); �

y(i)) + log pcat(y
(i); µ), [2.22]

which is now written as a function L of the parameters � and µ. Let’s continue to focus
on the parameters �. Since p(y) is constant with respect to �, we can drop it:

L(�) =
NX

i=1

log pmult(x
(i); �

y(i)) =
NX

i=1

logB(x(i)) +
VX

j=1

x(i)
j

log �
y(i),j , [2.23]

where B(x(i)) is constant with respect to �.

Maximum-likelihood estimation chooses � to maximize the log-likelihood L. How-
ever, the solution must obey the following constraints:

VX

j=1

�y,j = 1 8y [2.24]

These constraints can be incorporated by adding a set of Lagrange multipliers to the objec-
tive (see Appendix B for more details). To solve for each ✓y, we maximize the Lagrangian,

`(�y) =
X

i:y(i)=y

VX

j=1

x(i)
j

log �y,j � �(
VX

j=1

�y,j � 1). [2.25]

Differentiating with respect to the parameter �y,j yields,

@`(�y)

@�y,j

=
X

i:y(i)=y

x(i)
j
/�y,j � �. [2.26]
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• Choose ɸ,μ to maximize log-likelihood



Cond. indep. is a problem
• We can do better than BOW features by 

feature engineering lots of little variants of 
words and phrases 

• e.g. ngram features … character n-grams … 
words with or without lowercasing … number of 
digits in the text … number of punctuation 
marks in the text … etc. 

• Even overlapping features can have useful 
predictive value 

• But… does NB do well with repetitive 
features?

19
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To predict a label from a bag-of-words, we can assign a score to each word in the vo-
cabulary, measuring the compatibility with the label. For example, for the label FICTION,
we might assign a positive score to the word whale, and a negative score to the word
molybdenum. These scores are called weights, and they are arranged in a column vector ✓.

Suppose that you want a multiclass classifier, where K , |Y| > 2. For example, you
might want to classify news stories about sports, celebrities, music, and business. The goal
is to predict a label ŷ, given the bag of words x, using the weights ✓. For each label y 2 Y ,
we compute a score  (x, y), which is a scalar measure of the compatibility between the
bag-of-words x and the label y. In a linear bag-of-words classifier, this score is the vector
inner product between the weights ✓ and the output of a feature function f(x, y),

 (x, y) = ✓ · f(x, y) =
X

j

✓jfj(x, y). [2.1]

As the notation suggests, f is a function of two arguments, the word counts x and the
label y, and it returns a vector output. For example, given arguments x and y, element j
of this feature vector might be,

fj(x, y) =

(
xwhale, if y = FICTION

0, otherwise
[2.2]

This function returns the count of the word whale if the label is FICTION, and it returns zero
otherwise. The index j depends on the position of whale in the vocabulary, and of FICTION
in the set of possible labels. The corresponding weight ✓j then scores the compatibility of
the word whale with the label FICTION.1 A positive score means that this word makes the
label more likely.

The output of the feature function can be formalized as a vector:

f(x, y = 1) = [x; 0; 0; . . . ; 0| {z }
(K�1)⇥V

] [2.3]

f(x, y = 2) = [0; 0; . . . ; 0| {z }
V

; x; 0; 0; . . . ; 0| {z }
(K�2)⇥V

] [2.4]

f(x, y = K) = [0; 0; . . . ; 0| {z }
(K�1)⇥V

; x], [2.5]

where [0; 0; . . . ; 0| {z }
(K�1)⇥V

] is a column vector of (K � 1) ⇥ V zeros, and the semicolon indicates

vertical concatenation. For each of the K possible labels, the feature function returns a
1In practice, both f and ✓ may be implemented as a dictionary rather than vectors, so that it is not

necessary to explicitly identify j. In such an implementation, the tuple (whale, FICTION) acts as a key in both
dictionaries; the values in f are feature counts, and the values in ✓ are weights.

Jacob Eisenstein. Draft of November 13, 2018.



Discriminative learning
• NB (generative) learning chooses params to 

maximize p(Xtrain,Ytrain), then indirectly gives the 
linear prediction model. 

• But if we just care about prediction, why not 
directly learn to minimize prediction errors? 

• Perceptron: choose params to minimize 1-0 loss. 
• SVM: choose it to minimize hinge loss 

• Logistic regression: choose theta to maximize 
conditional log-likelihood (a.k.a. minimize logistic 
loss a.k.a. cross-entropy)

20



Logistic regression
• Directly define the conditional probability of 

label given text via the softmax of the linear 
scoring function

2.5. LOGISTIC REGRESSION 35

where each ⇠i has been substituted by the right-hand side of Equation 2.52, and the factor
of C on the slack variables has been replaced by an equivalent factor of � = 1

C
on the

norm of the weights.

Equation 2.53 can be rewritten by expanding the margin,

min
✓

�

2
||✓||

2
2 +

NX

i=1

✓
max
y2Y

⇣
✓ · f(x(i), y) + c(y(i), y)

⌘
� ✓ · f(x(i), y(i))

◆

+

, [2.54]

where c(y, y(i)) is the cost function defined in Equation 2.46. We can now differentiate
with respect to the weights,

r✓LSVM =�✓ +
NX

i=1

f(x(i), ŷ) � f(x(i), y(i)), [2.55]

where LSVM refers to minimization objective in Equation 2.54 and ŷ = argmaxy2Y ✓ ·

f(x(i), y) + c(y(i), y). The online support vector machine update arises from the appli-
cation of stochastic gradient descent (described in § 2.6.2) to this gradient.

2.5 Logistic regression

Thus far, we have seen two broad classes of learning algorithms. Naı̈ve Bayes is a prob-
abilistic method, where learning is equivalent to estimating a joint probability distribu-
tion. The perceptron and support vector machine are discriminative, error-driven algo-
rithms: the learning objective is closely related to the number of errors on the training
data. Probabilistic and error-driven approaches each have advantages: probability makes
it possible to quantify uncertainty about the predicted labels, but the probability model of
Naı̈ve Bayes makes unrealistic independence assumptions that limit the features that can
be used.

Logistic regression combines advantages of discriminative and probabilistic classi-
fiers. Unlike Naı̈ve Bayes, which starts from the joint probability p

X,Y
, logistic regression

defines the desired conditional probability p
Y |X directly. Think of ✓ · f(x, y) as a scoring

function for the compatibility of the base features x and the label y. To convert this score
into a probability, we first exponentiate, obtaining exp (✓ · f(x, y)), which is guaranteed
to be non-negative. Next, we normalize, dividing over all possible labels y0 2 Y . The
resulting conditional probability is defined as,

p(y | x; ✓) =
exp (✓ · f(x, y))P

y02Y exp (✓ · f(x, y0))
. [2.56]
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Given a dataset D = {(x(i), y(i))}N
i=1, the weights ✓ are estimated by maximum condi-

tional likelihood,

log p(y(1:N)
| x(1:N); ✓) =

NX

i=1

log p(y(i) | x(i); ✓) [2.57]

=
NX

i=1

✓ · f(x(i), y(i)) � log
X

y02Y
exp

⇣
✓ · f(x(i), y0)

⌘
. [2.58]

The final line is obtained by plugging in Equation 2.56 and taking the logarithm.16 Inside
the sum, we have the (additive inverse of the) logistic loss,

`LOGREG(✓; x(i), y(i)) = �✓ · f(x(i), y(i)) + log
X

y02Y
exp(✓ · f(x(i), y0)) [2.59]

The logistic loss is shown in Figure 2.2 on page 31. A key difference from the zero-one
and hinge losses is that logistic loss is never zero. This means that the objective function
can always be improved by assigning higher confidence to the correct label.

2.5.1 Regularization

As with the support vector machine, better generalization can be obtained by penalizing
the norm of ✓. This is done by adding a multiple of the squared norm �

2 ||✓||
2
2 to the

minimization objective. This is called L2 regularization, because ||✓||
2
2 is the squared L2

norm of the vector ✓. Regularization forces the estimator to trade off performance on the
training data against the norm of the weights, and this can help to prevent overfitting.
Consider what would happen to the unregularized weight for a base feature j that is
active in only one instance x(i): the conditional log-likelihood could always be improved
by increasing the weight for this feature, so that ✓(j,y(i)) ! 1 and ✓(j,ỹ 6=y(i)) ! �1, where

(j, y) is the index of feature associated with x(i)
j

and label y in f(x(i), y).

In § 2.2.4 (footnote 11), we saw that smoothing the probabilities of a Naı̈ve Bayes clas-
sifier can be justified as a form of maximum a posteriori estimation, in which the param-
eters of the classifier are themselves random variables, drawn from a prior distribution.
The same justification applies to L2 regularization. In this case, the prior is a zero-mean
Gaussian on each term of ✓. The log-likelihood under a zero-mean Gaussian is,

logN(✓j ; 0,�
2) / �

1

2�2
✓2j , [2.60]

so that the regularization weight � is equal to the inverse variance of the prior, � = 1
�2 .

16The log-sum-exp term is a common pattern in machine learning. It is numerically unstable, because it
will underflow if the inner product is small, and overflow if the inner product is large. Scientific computing
libraries usually contain special functions for computing logsumexp, but with some thought, you should be
able to see how to create an implementation that is numerically stable.

Jacob Eisenstein. Draft of November 13, 2018.

• Learning: choose theta to maximize the 
conditional log-likelihood,

exp and normalize

Give high scores to observed y(i)



Logistic loss
Negative log-likelihood for one example
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Given a dataset D = {(x(i), y(i))}N
i=1, the weights ✓ are estimated by maximum condi-

tional likelihood,

log p(y(1:N)
| x(1:N); ✓) =

NX

i=1

log p(y(i) | x(i); ✓) [2.57]

=
NX

i=1

✓ · f(x(i), y(i)) � log
X

y02Y
exp

⇣
✓ · f(x(i), y0)

⌘
. [2.58]

The final line is obtained by plugging in Equation 2.56 and taking the logarithm.16 Inside
the sum, we have the (additive inverse of the) logistic loss,

`LOGREG(✓; x(i), y(i)) = �✓ · f(x(i), y(i)) + log
X

y02Y
exp(✓ · f(x(i), y0)) [2.59]

The logistic loss is shown in Figure 2.2 on page 31. A key difference from the zero-one
and hinge losses is that logistic loss is never zero. This means that the objective function
can always be improved by assigning higher confidence to the correct label.

2.5.1 Regularization

As with the support vector machine, better generalization can be obtained by penalizing
the norm of ✓. This is done by adding a multiple of the squared norm �

2 ||✓||
2
2 to the

minimization objective. This is called L2 regularization, because ||✓||
2
2 is the squared L2

norm of the vector ✓. Regularization forces the estimator to trade off performance on the
training data against the norm of the weights, and this can help to prevent overfitting.
Consider what would happen to the unregularized weight for a base feature j that is
active in only one instance x(i): the conditional log-likelihood could always be improved
by increasing the weight for this feature, so that ✓(j,y(i)) ! 1 and ✓(j,ỹ 6=y(i)) ! �1, where

(j, y) is the index of feature associated with x(i)
j

and label y in f(x(i), y).

In § 2.2.4 (footnote 11), we saw that smoothing the probabilities of a Naı̈ve Bayes clas-
sifier can be justified as a form of maximum a posteriori estimation, in which the param-
eters of the classifier are themselves random variables, drawn from a prior distribution.
The same justification applies to L2 regularization. In this case, the prior is a zero-mean
Gaussian on each term of ✓. The log-likelihood under a zero-mean Gaussian is,

logN(✓j ; 0,�
2) / �

1

2�2
✓2j , [2.60]

so that the regularization weight � is equal to the inverse variance of the prior, � = 1
�2 .

16The log-sum-exp term is a common pattern in machine learning. It is numerically unstable, because it
will underflow if the inner product is small, and overflow if the inner product is large. Scientific computing
libraries usually contain special functions for computing logsumexp, but with some thought, you should be
able to see how to create an implementation that is numerically stable.

Jacob Eisenstein. Draft of November 13, 2018.
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�2 �1 0 1 2

✓ · f(x(i), y(i)) � ✓ · f(x(i), ŷ)

0

1

2

3

lo
ss

0/1 loss

margin loss

logistic loss

Figure 2.2: Margin, zero-one, and logistic loss functions.

into a loss function,

`MARGIN(✓; x(i), y(i)) =

(
0, �(✓; x(i), y(i)) � 1,

1 � �(✓; x(i), y(i)), otherwise
[2.44]

=
⇣
1 � �(✓; x(i), y(i))

⌘

+
, [2.45]

where (x)+ = max(0, x). The loss is zero if there is a margin of at least 1 between the
score for the true label and the best-scoring alternative ŷ. This is almost identical to the
perceptron loss, but the hinge point is shifted to the right, as shown in Figure 2.2. The
margin loss is a convex upper bound on the zero-one loss.

The margin loss can be minimized using an online learning rule that is similar to per-
ceptron. We will call this learning rule the online support vector machine, for reasons
that will be discussed in the derivation. Let us first generalize the notion of a classifica-
tion error with a cost function c(y(i), y). We will focus on the simple cost function,

c(y(i), y) =

(
1, y(i) 6= ŷ

0, otherwise,
[2.46]

but it is possible to design specialized cost functions that assign heavier penalties to espe-
cially undesirable errors (Tsochantaridis et al., 2004). This idea is revisited in chapter 7.

Using the cost function, we can now define the online support vector machine as the
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• “Soft” grading of 
errors 
• 99% prob for y(i) 

=> 😀  
• 1% prob for y(i) 

=> 😂 
• 0%?



LogReg learning

• There is no closed form MLE 
• But, fortunately, the log-lik is concave (NLL 

convex) 
• Use gradient descent! 

• 1. Calculate gradient equations 
• 2. Use a batch or online gradient algorithm
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Regularization
• For many NLP feature functions, training data is 

often linearly separable. Weights diverge to +/- inf 
• Regularization is essential. Typically use the L2 

norm of weights, resulting in a regularized loss:

24

2.6. OPTIMIZATION 37

2.5.2 Gradients
Logistic loss is minimized by optimization along the gradient. Specific algorithms are de-
scribed in the next section, but first let’s compute the gradient with respect to the logistic
loss of a single example:

`LOGREG = � ✓ · f(x(i), y(i)) + log
X

y02Y
exp

⇣
✓ · f(x(i), y0)

⌘
[2.61]

@`

@✓
= � f(x(i), y(i)) +

1P
y002Y exp

�
✓ · f(x(i), y00)

� ⇥

X

y02Y
exp

⇣
✓ · f(x(i), y0)

⌘
⇥ f(x(i), y0)

[2.62]

= � f(x(i), y(i)) +
X

y02Y

exp
�
✓ · f(x(i), y0)

�
P

y002Y exp
�
✓ · f(x(i), y00)

� ⇥ f(x(i), y0) [2.63]

= � f(x(i), y(i)) +
X

y02Y
p(y0 | x(i); ✓) ⇥ f(x(i), y0) [2.64]

= � f(x(i), y(i)) + EY |X [f(x(i), y)]. [2.65]

The final step employs the definition of a conditional expectation (§ A.5). The gradient of
the logistic loss is equal to the difference between the expected counts under the current
model, EY |X [f(x(i), y)], and the observed feature counts f(x(i), y(i)). When these two
vectors are equal for a single instance, there is nothing more to learn from it; when they
are equal in sum over the entire dataset, there is nothing more to learn from the dataset as
a whole. The gradient of the hinge loss is nearly identical, but it involves the features of
the predicted label under the current model, f(x(i), ŷ), rather than the expected features
EY |X [f(x(i), y)] under the conditional distribution p(y | x; ✓).

The regularizer contributes �✓ to the overall gradient:

LLOGREG =
�

2
||✓||

2
2 �

NX

i=1

0

@✓ · f(x(i), y(i)) � log
X

y02Y
exp ✓ · f(x(i), y0)

1

A [2.66]

r✓LLOGREG =�✓ �

NX

i=1

⇣
f(x(i), y(i)) � Ey|x[f(x(i), y)]

⌘
. [2.67]

2.6 Optimization

Each of the classification algorithms in this chapter can be viewed as an optimization
problem:

• In Naı̈ve Bayes, the objective is the joint likelihood log p(x(1:N),y(1:N)). Maximum
likelihood estimation yields a closed-form solution for ✓.
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Summary: NLP prediction
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• Today: Linear models Ψ, BOW x & f, multiclass y 
• Models: Naive Bayes and Logistic Regression 

• Learning: (regularized) MLE 
• Wednesday: Neural network Ψ  
• Later: sequential x 
• Later: structured output y

1.2. THREE THEMES IN NATURAL LANGUAGE PROCESSING 7

learning. For example, in a task like search, it may be useful to identify each word’s stem,
so that a system can more easily generalize across related terms such as whale, whales,
whalers, and whaling. (This issue is relatively benign in English, as compared to the many
other languages which include much more elaborate systems of prefixed and suffixes.)
Such features could be obtained from a hand-crafted resource, like a dictionary that maps
each word to a single root form. Alternatively, features can be obtained from the output of
a general-purpose language processing system, such as a parser or part-of-speech tagger,
which may itself be built on supervised machine learning.

Another synthesis of learning and knowledge is in model structure: building machine
learning models whose architectures are inspired by linguistic theories. For example, the
organization of sentences is often described as compositional, with meaning of larger
units gradually constructed from the meaning of their smaller constituents. This idea
can be built into the architecture of a deep neural network, which is then trained using
contemporary deep learning techniques (Dyer et al., 2016).

The debate about the relative importance of machine learning and linguistic knowl-
edge sometimes becomes heated. No machine learning specialist likes to be told that their
engineering methodology is unscientific alchemy;5 nor does a linguist want to hear that
the search for general linguistic principles and structures has been made irrelevant by big
data. Yet there is clearly room for both types of research: we need to know how far we
can go with end-to-end learning alone, while at the same time, we continue the search for
linguistic representations that generalize across applications, scenarios, and languages.
For more on the history of this debate, see Church (2011); for an optimistic view of the
potential symbiosis between computational linguistics and deep learning, see Manning
(2015).

1.2.2 Search and learning

Many natural language processing problems can be written mathematically in the form
of optimization,6

ŷ = argmax
y2Y(x)

 (x,y; ✓), [1.1]

where,

• x is the input, which is an element of a set X ;

• y is the output, which is an element of a set Y(x);
5Ali Rahimi argued that much of deep learning research was similar to “alchemy” in a presentation at

the 2017 conference on Neural Information Processing Systems. He was advocating for more learning theory,
not more linguistics.

6Throughout this text, equations will be numbered by square brackets, and linguistic examples will be
numbered by parentheses.
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