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NLP as linguistic prediction
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NLP modeling
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¢ Modeling: design important ling. phenomena into

¥
e Reuse search/learning optimization methods fog

for many different NLP problems
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NLP modeling

e Pred./Search: Scorer (model) Params

N d
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* Today: Linear models ¥, BOW x & f, multiclass y

—

(¢ —_——

e Models: Naive Bayes and Logistic Regression
e | earning: (regularized) MLE

e \Wednesday: @@%

e | ater: sequential x

e | ater: structured output y

5




Linear classification models

e Assume classification problem: \(32 VS Mgy ] ?@5}}
* Input text x
N\/ ;J
* Qutput discrete yeY, |Y|=K
: —"" ~ = .
e Scoring function Is a dot product of weight

vector 8 and a vector—valued feature function f
NM - —
o ﬂ_ﬂls a representatlon of the text What to use?

e f computes features to score the candidate output.
- T
What features to use?
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Bag of words representation
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e \/ocabulary V: set of all word
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Bag of words: linear model

e (One feature for each word and class pair.
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Bag of words: linear model

Original text

\—/

\/

It was the

U(x

—)

N

Bag of words

»” ‘H OOFRPONONONINONONOIFROO

<

AR 'S

Feature vector V\/elg htS

s T

—

aardvark
t.).ést y=Fiction
it
of y=News
the
times 0 y=Cossip
was —
v.v.(.)rst 0 y=Sports
2yxt -
<OFFSET>

f(x,y=News) 0

— Score



How to set parameters?

e (Could use deterministic 1 and O weights —
implicit in lexicon/dictionary/keyword methods
(e.g. racial slur blacklist, sentiment lexicons, etc.)

But ¥%00 have labeled éﬁ,typically

supervised learning is better.
e [abeled data: “gold-standard” (text, label) pairs
e e \.._/\//,\,30
? )\ LIV
{(:l}( )7y( )) 1=1
T y N
e [wo linear, probabilistic models today

e Naive Bayes cﬁw fﬁ

e | ogistic Regression
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Naive Bayes

e Assume a model of both text and labels
(each doc i.i.d.,)

: 1:N N 1 )
p(x )7y( ))= Hizle,Y(w()vy())
= " — = Y
e p(x,y) is a generative model: has a story of how both the label and
document text was generated

e generating text is a.k.a. language model — other LMs are
used a lot in NLP S

e Once we have a model, we can do:
@ 1. Learning: fit p(x,y)’s parameters to training data (using MLE)

2. Prediction ("Search”): infer labels on new documents (using
Bayes Rule)






NB generative model nli o)

Algorithm 1 Generative process for the Naive Bayes classification model
for Instance i € {1,2,..., N} do:

<Dfaw the label y() ~ Categoncal(p‘\ Q(:\ﬁ (\LB =M w (_bk & IB\/

Draw the word &oun uitinomial( @, 7t )

7 L il W —
Algorithm 2 Alternative generative process Tor (e Naive Bayes classification model

for Instance i € {1,2 @do
Draw the label y() ~Tategorical(u); ﬁ\\ A"
for Token m €T, 2,. W —
V C Draw the token w, m ~ Categorical(¢, ) )- (WV\/\ I \) '-% k “\ _I_\\
<\ Types vs. Tokens —
Sererative Fobabilty oy
e (Generative probability notation:

* a ~ Distrib(theta): “Random variable a is sampled according
1o Histnbut on Distrib, parameterized by theta ? W\“} 5\”'5’

e Parameters

© M pnor probability of class k j\/\ ¢ Q\A SM%(K>

. Cl)kw probablllty word w dets generated undeFdoc class k

o “Nave” fach word token is generated independently.
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NB prediction

¢ First assume we have parameters. How do we predict

the label given text”? Chose the one with highest o)
posterior probability p(y | X) = p(x, N
iy B )

A —_—

Uy = ar axlogp(a: y,u,
> P
—argmax@pwryﬂ) Qz ww) N>

logp(z | y; @) + logp(y; u) =log [WH qﬁ@] + log py
- LI

:logW—i— ij log ¢y ; + log 1y
=1 # T " —
¢ This can be shown to be a linear model (See text). > & q[\ /
)(

e Parameters = log probs of words and class priors

* Features = COWMder candidate class; wnd@ate%\

L/\—/
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NB learning

e |ntuitively, relative frequency estimation
\///—\_/ﬂ
sounds good:__ =/

& — N TN
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count(y, j) >

Do i = Y, J o iy =y L
Y,J V . o )
W
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e This has a deeper theoretical basis!



NB learning: MLE

e Maximum Likelihood Estimation: choose params
that give highest likelihood to the training data

>

= argmax p(z(3Y), 4(1N). )
—))

o I =
(= = |
L(6)
log likelihood function

U — argmax Z log p(w(i), y): 0)
(8 | Y




NB learning: MLE

o
. Choose@ u)o maximize log-likelihood

Zlog Pa(@59y00) + 108 P8 )

~
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e Under the sum-to-1 constraints

%4 K
Y dyi=1 Wy > k=1
%Q—D k
e (Calculus with Lagrange multipliers
===> [ntuitive relative frequency estimates!




Bias-variance tradeoffs
P IS e Spesc I Yor Hetpoa
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What about class priors?

e Choose c|> U to maximize log-likelihood

Z 108 Py (2 8,0) +108 Pegy (5 2

® L is set to class frequencies in training data.
s this realistic”?

e [See our paper! Keﬁand O’Connor, 2018]




Cond. indep. is a problem

e \We can do better than BOW features by
feature engineering lots of little variants of
words and phrases
* e.g. ngram features ... character n-grams ...

words with or without lowercasing ... number of

digits in the text ... number of punctuation
marks in the text ... etc.

* Even overlapping features can have useful
predictive value

e But... does NB do well with repetitive
features”

U(x,y) =0 f(z,y) = Zijj(fB,y)



Discriminative learning

e NB (generative) learning chooses params to
maximize p(Xtain Ytan) then indirectly gives the
linear prediction model.

e But if we just care about prediction, why not
directly learn to minimize prediction errors?
e Perceptron: choose params to minimize 1-0 loss.
 SVM: choose it to minimize hinge loss

e | ogistic regression: choose theta to maximize
conditional log-likelihood (a.k.a. minimize logistic
loss a.k.a. cross-entropy)
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Logistic regression

e Directly define the conditional probability of
label given text via the softmax of the linear
scoring function

-
ply | z;0) : exp and normalize

B AN WA I CRF (CAT)

P R

¢ | earning: choose theta to maximize the
conditional log-likelihood,

N
logp(y"™ | &) 0) =) "logp(y"” | =*); 0)

N
=) 0-f(z,yV)—log Y exp (0 f(z',y)

:
"3 Give high scores to observed y(i)




Logistic loss

Negative log-likelihood for one example |
lrocrec(0; 2, y) = —0 - f(a) y) +1og Y " exp(6 - f(z,y))

y' ey
3 (11 7 .
==+ 0/Lloss e “Soft” grading of
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27 ----- Iogiftic loss errors
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i .................. => &
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Figure 2.2: Margin, zero-one, and logistic loss functions.
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LogReg learning

e There is no closed form MLE

e But, fortunately, the log-lik is concave (NLL
convex) (=7

e Use gradient descent! « LBf < S

e 1. Calculate gradient equations
e 2. Use a batch or online gradient algorithm
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Regularization

e [For many NLP feature functions, training data is
often linearly separable. Weights diverge to +/- inf

e Regularization is essential. Typically use the L2
norm of weights, resulting in a regularized loss:

N
\ N .
LiocRrec :§H9H% - Z (9 ' f(w(z)ay(z)) — log Z exp 6 - f(x(z)ay/))

i=1 y'ey
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Summary: NLP prediction

Params
v
/
Predicted I | T \ Output
output candidate

e Today: Linear models ¥, BOW x & f, multiclass y
e Models: Naive Bayes and Logistic Regression
e | earning: (regularized) MLE
@ Wednesday: Neural network ¥
e | ater: sequential x

e | ater: structured output y
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