
Homework 2

CS 685, Fall 2025

Submit all answers as a PDF to Gradescope. Some sections ask for code; include the relevant
implementation there. If you’re using Colab for all coding this is by default, though feel free to
not use Colab if you want. If you handwrite some answers, write very neatly if you want to receive
full credit.

1 Dead neurons

(From INLP, ch. 3)

3.4. CONVOLUTIONAL NEURAL NETWORKS 67

• Show how the probability of a small initial gradient on any weight, @zk
@✓j,k

< ↵,

depends on the size of the input M . Hint: use the lower bound,

Pr(�(✓k · x)⇥ (1� �(✓k · x)) < ↵) � 2 Pr(�(✓k · x) < ↵), [3.60]

and relate this probability to the variance V [✓k · x].
• Design an alternative initialization that removes this dependence.

8. The ReLU activation function can lead to “dead neurons”, which can never be acti-
vated on any input. Consider the following two-layer feedforward network with a
scalar output y:

zi =ReLU(✓
(x!z)
i · x + bi) [3.61]

y =✓(z!y) · z. [3.62]

Suppose that the input is a binary vector of observations, x 2 {0, 1}D.

a) Under what condition is node zi “dead”? Your answer should be expressed in
terms of the parameters ✓(x!z)

i and bi.

b) Suppose that the gradient of the loss on a given instance is @`
@y = 1. Derive the

gradients @`
@bi

and @`

@✓
(x!z)
j,i

for such an instance.

c) Using your answers to the previous two parts, explain why a dead neuron can
never be brought back to life during gradient-based learning.

9. Suppose that the parameters ⇥ = {⇥(x!z),⇥(z ! y), b} are a local optimum of a
feedforward network in the following sense: there exists some ✏ > 0 such that,

⇣
||⇥̃(x!z) �⇥(x!z)||2F + ||⇥̃(z!y) �⇥(z!y)||2F + ||b̃� b||22 < ✏

⌘

)
⇣
L(⇥̃) > L(⇥)

⌘
[3.63]

Define the function ⇡ as a permutation on the hidden units, as described in § 3.3.3,
so that for any ⇥, L(⇥) = L(⇥⇡). Prove that if a feedforward network has a local
optimum in the sense of Equation 3.63, then its loss is not a convex function of the
parameters ⇥, using the definition of convexity from § 2.4

10. Consider a network with a single hidden layer, and a single output,

y = ✓(z!y) · g(⇥(x!z)x). [3.64]

Assume that g is the ReLU function. Show that for any matrix of weights ⇥(x!z), it
is permissible to rescale each row to have a norm of one, because an identical output
can be obtained by finding a corresponding rescaling of ✓(z!y).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

2 Vanishing gradients

6.5. OUT-OF-VOCABULARY WORDS 143

Given a corpus of size M , what is the expectation of the fraction of all possible
bigrams that have zero count? You may assume V is large enough that 1

V ⇡ 1
V �1 .

5. Continuing the previous problem, determine the value of M such that the fraction
of bigrams with zero count is at most ✏ 2 (0, 1). As a hint, you may use the approxi-
mation ln(1 + ↵) ⇡ ↵ for ↵ ⇡ 0.

6. In real languages, words probabilities are neither uniform nor independent. Assume
that word probabilities are independent but not uniform, so that in general p(w) 6=
1
V . Prove that the expected fraction of unseen bigrams will be higher than in the IID
case.

7. Consider a recurrent neural network with a single hidden unit and a sigmoid acti-
vation, hm = �(✓hm�1 + xm). Prove that if |✓| < 1, then the gradient @hm

@hm�k
goes to

zero as k !1.7

8. Zipf’s law states that if the word types in a corpus are sorted by frequency, then the
frequency of the word at rank r is proportional to r�s, where s is a free parameter,
usually around 1. (Another way to view Zipf’s law is that a plot of log frequency
against log rank will be linear.) Solve for s using the counts of the first and second
most frequent words, c1 and c2.

9. Download the wikitext-2 dataset.8 Read in the training data and compute word
counts. Estimate the Zipf’s law coefficient by,

ŝ = exp

✓
(log r) · (log c)

|| log r||22

◆
, [6.45]

where r = [1, 2, 3, . . .] is the vector of ranks of all words in the corpus, and c =
[c1, c2, c3, . . .] is the vector of counts of all words in the corpus, sorted in descending
order.

Make a log-log plot of the observed counts, and the expected counts according to
Zipf’s law. The sum

P1
r=1 rs = ⇣(s) is the Riemann zeta function, available in

python’s scipy library as scipy.special.zeta.

10. Using the Pytorch library, train an LSTM language model from the Wikitext train-
ing corpus. After each epoch of training, compute its perplexity on the Wikitext
validation corpus. Stop training when the perplexity stops improving.

7This proof generalizes to vector hidden units by considering the largest eigenvector of the matrix ⇥ (Pas-
canu et al., 2013).

8Available at https://github.com/pytorch/examples/tree/master/word_language_
model/data/wikitext-2 in September 2018. The dataset is already tokenized, and already replaces rare
words with hUNKi, so no preprocessing is necessary.

Under contract with MIT Press, shared under CC-BY-NC-ND license.

(This proof generalizes to larger networks by considering the largest eigenvector of matrix Θ.
From INLP, ch. 6)

1

3 Softmax gradients

Consider a language model to model the next word w ∈ V , where p(w | ...context...) ≡ qw, from a
linear softmax layer

q = softmax(y), y = Wx

where x ∈ Rm is an embedding summarizing the context (from concatenation, last RNN state,
(attention-weighted) averaging, whatever), and W is a weight matrix.

3.1

What are the dimensionalities of W , y, and q?

3.2

Assume the next word turns out to be ‘dog’. Assume cross-entropy loss,

L =
∑

w∈V
1{w = ‘dog′} log 1

qw

Derive the loss’s gradient with respect to the pre-softmax scores y. That is, calculate the gradi-
ent∇yL, which in lecture we wrote as dL

dy .
(Hint: you may have to treat different elements of y differently.)
(The loss formula above uses one-hot empirical distribution as an indicator function (like in

JM ch. 6), and uses word “surprisal”, log 1/q = − log q. Feel free to use whatever notation is useful
for you, and is defined and clear to us, as readers.)

3.3

Cross-entropy loss encourages the model to allocate probability to the empirical data. Explain
how this gradient does (or does not) match this high-level interpretation. For example, it may be
useful to discuss the interpretation of taking a stochastic gradient descent step from this example.

3.4

You calculated the loss gradient with respect to all elements of y. But of course, to calculate the
loss, you only need qdog (or whichever index is for the actual next word), and all other qk (k 6= dog)
are irrelevant. To backpropagate gradients further back on the computation graph to W and x,
do you need to use all of y, or just ydog? Draw a bit of a relevant computation graph, and any
additional intuition, to help explain.

(If you’d like a more concrete exposition of the backprop algorithm, see the Eisenstein INLP
textbook, section 3.3.1; link on course homepage.)

4 Word embeddings: similarities

4.1

Download the GloVe word embeddings, implement cosine similarity, and a function to identify
the K nearest neighbors of a given word. (Do all implementation yourself using numpy; do not

2

use any other libraries.) Include your implementation in your submission.
Additional detail: for the word embeddings, please use the 50-dimensional variant of general

GloVe word embeddings. We suggest this starter code to access them (the specific model name
is defined by the Gensim package (here), which has the appropriate link to the original Stanford
GloVe website (here)).

import gensim.downloader as api
import numpy as np

Load pre-trained embeddings (this may take time)
glove = api.load("glove-wiki-gigaword-50")

4.2

Look up the 10 nearest neighbors for “dog” and “cat”. Show them for each, along with their
scores. What aspects or specific examples from these listings make sense? Why?

4.3

What aspects or specific examples from these listings, make less sense? Why?

4.4

Try some other nearest-neighbor queries for various words. Choose a word whose list shows
something interesting; show it and explain what you found.

5 Word embeddings: the linear gender hypothesis

5.1

Implement a version of Bolukbasi et al. (2016)’s linear gender analysis method, which defines a
word’s signed gender score as its cosine against a “gender direction” in the embedding space.

Specifically, for this section, use their most basic variant to define the gender direction exclu-
sively through two pronouns, as E(‘he’)-E(’she’), where positive should indicate male and negative
indicates female (for a binary gender system). Report a sorted list, along with their gender scores,
for the following professions or person terms. Include your code implementation here.

terms = ["doctor", "receptionist", "engineer",
"scientist", "nurse", "teacher"]

5.2

Create a another list of terms, with at least 10 terms, whose embedding-defined implicit gender
is interesting to investigate, in your opinion. Run the same analysis, report the results and your
interpretation.

3

https://github.com/piskvorky/gensim-data
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.06520

5.3

Antoniak and Mimno (2021) have criticized the use of a small set of seed terms to define semantic
concepts, since the choice of seed terms may affect results. So conduct a sensitivity analysis: try
at least two other pairs of gendered seed terms, and compare any changes to the scores or rank
ordering. What do you find?

5.4

Does gender bias in word embeddings matter? Choose either yes or no, and argue for that posi-
tion. For additional possible ideas, see Blodgett et al. (2020) (or the results of the extra credit, if
you choose to do it).

5.5 Extra Credit

Implement one of Bolukbasi’s gender debiasing methods, and try one of Gonen and Goldberg
2019’s methods to re-identify gender even after the supposed debiasing. (We’d suggest the k-
means one, which is relatively straightforward. Feel free to use any software libraries here; for
example, sklearn’s k-means.) What do you find?

6 Document classification

Here you’ll conduct supervised document classification experiments for binary sentiment clas-
sification, on the IMDB dataset we used in class. Download the data; we suggest using the
huggingface-accessed version as from class:

import datasets
from datasets import load_dataset
dd = load_dataset("imdb")

and use their train and test splits. (We won’t bother with a development set for this homework,
but for your projects it’s highly recommended.)

6.1

Implement a bag-of-words logistic regression classifier and provide your implementation here.
You will have to construct the word vocabulary from the training set, including a mapping

from word strings to their integer indexes in the model. You may find sklearn’s “DictVectorizer”
class to be helpful here (but its use is totally optional). For the machine learning level of the model,
we suggest using sklearn’s “LogisticRegression” classifier with L2 regularization. For tokeniza-
tion, please use the simple tokenizer that Brendan used in class, just so we can more easily assess
your results for grading:

re.split(’\W+’, text.lower())

6.2

Report results on the test set. Did you beat the manual keyword counting heuristic classifier from
class?

4

https://aclanthology.org/2021.acl-long.148/
https://aclanthology.org/2020.acl-main.485/
https://aclanthology.org/N19-1061/
https://aclanthology.org/N19-1061/

6.3

Using the GloVe embeddings, implement a bag of embeddings classifier. Give your implementa-
tion in this section.

6.4

Report the BOE results on the test set. How does this model compare?

6.5

In theory, a word embedding based classifier should have an advantage over a BOW classifier,
when the training dataset is very small. Explain why this might be the case.

6.6

To test this hypothesis, try training on a much smaller random sample of the training set, 100
documents total (select them at random), and compare the results from the two different classifiers
using the same test set as all other experiments. What do you find?

6.7 Extra Credit

Try improving your model by incorporating some or all of the manual keywords that we collected
in class. For example, you could use their embeddings (say, via Garten et al. (2018)’s “distributed
dictionary representation”, where you simply average all word embeddings from a dictionary to
get a concept vector; they score a document via its cosine against the concept vector), or incorpo-
rate their count as a new manually defined feature, etc. Include your implementation, and report
results and findings.

6.8 Extra Credit

Try improving your model with any other method you like. Use any other software you like.
Include your implementation, and report results and findings.

5

https://link.springer.com/article/10.3758/s13428-017-0875-9

	Dead neurons
	Vanishing gradients
	Softmax gradients
	
	
	
	

	Word embeddings: similarities
	
	
	
	

	Word embeddings: the linear gender hypothesis
	
	
	
	
	Extra Credit

	Document classification
	
	
	
	
	
	
	Extra Credit
	Extra Credit

