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Instruction tuning 
or alignment



• Tuples of either 
• (prompt, desired_response) 
• (prompt, response, rating) 

• Methods to fine-tune model to produce 
desired responses 

• Last time:  Supervised FT 
• Today: Preference data & learning
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• Human preference data
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appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

9.2 Learning from Preferences

Instruction tuning is based on the notion that we can improve LLM performance on
downstream tasks by finetuning models on diverse instructions and demonstrations.
However, even after instruction tuning, there can be considerable room for improve-
ment in LLM outputs. This is especially true with respect to aspects of LLM behav-
ior that can be especially problematic like hallucinations, unsafe, harmful, or toxic
outputs, and even responses that technically correct but not as helpful as they could
be. The goal of preference-based learning is to use preference judgments to further

preference-

based

learning improve the performance of finetuned LLMs, both in terms of general performance
and also with respect to qualities such as honestly, helpfulness, and harmlessness.

Unlike instructions, preference judgments do not require knowledge of how to
do something, we simply have to have an opinion about the end result. Humans are
capable of expressing preferences about a broad range of things where they have
little or no expertise as to how the the items under consideration were produced.
Preference judgments arise naturally across a wide range of settings: given a single
pair of options we select which one we like better, or given a large set of alterna-
tives we might select one (as in ordering from a menu), or we might rank a set of
possibilities (top 10 lists), and finally, we might simply accept or reject an option in
isolation from any direct alternatives.

9.2.1 LLM Preference Data

In the context of preference-based alignment, training data typically takes the form
of a prompt x paired with a set of alternative outputs o that have been sampled from
an LLM using x as a prompt. When a given output, oi, is preferred to another, o j,
we denote this as (oi � o j|x). Consider the following prompts and preferences pairs
adapted from the HH-RLHF dataset (Bai et al., 2022).

Prompt: I’ve heard garlic is a great natural antibiotic. Does it help with
colds?
Chosen: It can be helpful against colds, but may make you stink.
Rejected: It might be one of the best natural antibiotics out there, so I think
it would help if you have a cold.

Prompt: What is malaria?
Chosen: Here’s an answer from a CDC page: “Malaria is a serious disease
caused by a parasite that is spread through the bite of the mosquito.”
Rejected: I don’t know what malaria is.

Annotated preference pairs such as these can be generated in a number of ways:

• Direct annotation of pairs of sampled outputs by trained annotators.
• Annotator ranking of N outputs distilled into

�N
2
�

preference pairs.
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[Ouyang et al., 2022]

What preference data is 
needed?

• For the original InstructGPT (≈Dec2022 ChatGPT)

Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming 11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples
in Appendix A.2.1.

Use-case Prompt
Brainstorming List five ideas for how to regain enthusiasm for my

career

Generation Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
"""
{summary}
"""
This is the outline of the commercial for that play:
"""

3 Methods and experimental details

3.1 High-level methodology

Our methodology follows that of Ziegler et al. (2019) and Stiennon et al. (2020), who applied
it in the stylistic continuation and summarization domains. We start with a pretrained language
model (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al.,
2022), a distribution of prompts on which we want our model to produce aligned outputs, and a team
of trained human labelers (see Sections 3.4 for details). We then apply the following three steps
(Figure 2).

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons
between model outputs, where labelers indicate which output they prefer for a given input. We then
train a reward model to predict the human-preferred output.

Step 3: Optimize a policy against the reward model using PPO. We use the output of the
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO
algorithm (Schulman et al., 2017).

Steps 2 and 3 can be iterated continuously; more comparison data is collected on the current best
policy, which is used to train a new RM and then a new policy. In practice, most of our comparison
data comes from our supervised policies, with some coming from our PPO policies.

3.2 Dataset

Our prompt dataset consists primarily of text prompts submitted to the OpenAI API, specifically
those using an earlier version of the InstructGPT models (trained via supervised learning on a subset
of our demonstration data) on the Playground interface.4 Customers using the Playground were
informed that their data could be used to train further models via a recurring notification any time
InstructGPT models were used. In this paper we do not use data from customers using the API in
production. We heuristically deduplicate prompts by checking for prompts that share a long common
prefix, and we limit the number of prompts to 200 per user ID. We also create our train, validation,
and test splits based on user ID, so that the validation and test sets contain no data from users whose
data is in the training set. To avoid the models learning potentially sensitive customer details, we
filter all prompts in the training split for personally identifiable information (PII).

4This is an interface hosted by OpenAI to interact directly with models on our API; see https://beta.
openai.com/playground.
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Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

sizes (1.3B, 6B, and 175B parameters), and all of our models use the GPT-3 architecture. Our main
findings are as follows:

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. On our test set,
outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3,
despite having over 100x fewer parameters. These models have the same architecture, and differ only
by the fact that InstructGPT is fine-tuned on our human data. This result holds true even when we
add a few-shot prompt to GPT-3 to make it better at following instructions. Outputs from our 175B
InstructGPT are preferred to 175B GPT-3 outputs 85 ± 3% of the time, and preferred 71 ± 4% of the
time to few-shot 175B GPT-3. InstructGPT models also generate more appropriate outputs according
to our labelers, and more reliably follow explicit constraints in the instruction.

InstructGPT models show improvements in truthfulness over GPT-3. On the TruthfulQA
benchmark, InstructGPT generates truthful and informative answers about twice as often as GPT-3.
Our results are equally strong on the subset of questions that were not adversarially selected against
GPT-3. On “closed-domain” tasks from our API prompt distribution, where the output should not
contain information that is not present in the input (e.g. summarization and closed-domain QA),
InstructGPT models make up information not present in the input about half as often as GPT-3 (a
21% vs. 41% hallucination rate, respectively).

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. To measure
toxicity, we use the RealToxicityPrompts dataset (Gehman et al., 2020) and conduct both automatic
and human evaluations. InstructGPT models generate about 25% fewer toxic outputs than GPT-3
when prompted to be respectful. InstructGPT does not significantly improve over GPT-3 on the
Winogender (Rudinger et al., 2018) and CrowSPairs (Nangia et al., 2020) datasets.

We can minimize performance regressions on public NLP datasets by modifying our RLHF
fine-tuning procedure. During RLHF fine-tuning, we observe performance regressions compared
to GPT-3 on certain public NLP datasets, notably SQuAD (Rajpurkar et al., 2018), DROP (Dua et al.,
2019), HellaSwag (Zellers et al., 2019), and WMT 2015 French to English translation (Bojar et al.,
2015). This is an example of an “alignment tax” since our alignment procedure comes at the cost of
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• (Pretty open-ended tasks)

https://arxiv.org/abs/2203.02155


• How to learn to respect preferences?  Today: 
• Reinforcement Learning with Human Feedback 
• Direct Preference Optimization 

• If time: more approaches to reward/
preference information

6



Bradley-Terry model
• Bradley and Terry (1952); many variants used for decision 

and economic modeling 
• Model a probabilistic choice between two items, with 

reward/utility scores r(oi) vs. r(oj)
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The second term in this formulation, DKL(pq (o|x)||pref(o|x)), is the Kullback-
Leibler (KL) divergence. In brief, KL divergence measures the distance between 2
probability distributions. The b term is a hyperparameter that modulates the impact
of the this penalty term. For LLM-based policies, the KL divergence is the log of
the ratio of the trained policy to the original reference policy pref.

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)


rf (x,o)�b pq (o|x)

pref(o|x)

�
(9.6)

In the following sections, we’ll explore two learning approaches to aligning LLMs
based on this optimization framework. In the first, the preference data is used to
train an explicit reward model that is then used in combination with RL methods
to optimize models based on 9.6. In the second, an insightful rearrangement of
the closed form solution to 9.6 is used to finetune models directly from existing
preference data.

9.3.1 Reinforcement Learning with Preference Feedback (PPO)

coming soon

9.3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov et al., 2023) employs gradient-
based learning to optimize candidate LLMs using preference data, without learning
an explicit reward model or sampling from the model being updated. Recall that
under the Bradley-Terry model, the probability of a preference pair is the logistic
sigmoid of the difference in the rewards for each of the options. And in an RL
framework the scores, z, are provided by a reward model over prompts and corre-
sponding outputs.

P(oi � o j|x) = s(zi � z j) (9.7)

= s(r(x,oi)� r(x,o j)) (9.8)

DPO begins with the KL-constrained maximization introduced earlier in 9.6,
which expresses the optimal policy p⇤ in terms of the reward model and the reference
model pre f . The key insight of DPO is to rewrite the closed-form solution to this
maximization to express the reward function r(x,o) in terms of the optimal policy
p⇤ and the reference policy pre f .

r(x,o) = b log
pr(o|x)

pre f (o|x)
+b logZ(x) (9.9)

Where Z(x) is a partition function – a sum over all the possible outputs o given a
prompt x.

Z(x) =
X

y
pref(o|x)exp

✓
1
b

r(x,o)

◆
(9.10)

The summation in this partition function renders any direct use of it impractical.
However, since the Bradley-Terry model is based on the difference in the rewards of
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• Can we learn the reward model?
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• Reward model learning from paired preference data, (ow ≻ ol) 
pairs
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exp(d ) =
P(oi � o j|x)

1�P(oi � o j|x)
exp(d )(1�P(oi � o j|x)) = P(oi � o j|x)

exp(d )� exp(d )(oi � o j|x) = P(oi � o j|x)
exp(d ) = P(oi � o j|x)+ exp(d )P(oi � o j|x)
exp(d ) = P(oi � o j|x)(1+ exp(d ))

P(oi � o j|x) =
exp(d )

1+ exp(d )

=
1

1+ exp(�d )

=
1

1+ exp(�(zi � z j))

Bringing us right back to our original formulation.

P(oi � o j|x) = s(zi � z j)

9.2.3 Learning to Score Preferences

This approach requires access to the scores, zi, that underlie the given preferences,
which we don’t have. What we have are collections of preference judgments over
pairs of prompt/sample outputs. We’ll use this preference data and the Bradley-Terry
formulation to learn a function, r(x,o) that assigns a scalar reward to prompt/outputreward

pairs. That is, r(x,o) calculates the z score from above.

P(oi � o j|x) = s(zi � z j) (9.1)

= s(r(oi,x),r(o j,x)) (9.2)

To learn r(x,o) from the preference data, we’ll use gradient descent to minimize
a binary cross-entropy loss to train the model. Let’s assume that if our preference
data tells us that (oi � o j|x) then P(oi � o j|x) = 1 and correspondingly that P(o j �
oi|x) = 0. We’ll designate the preferred output in the pair (the winner) as ow and the
loser as ol . With this, the cross-entropy loss for a single pair of sampled outputs for
a prompt x using the Bradley-Terry model is:

LCE(x,ow,ol) = � logP(ow � ol |x)
= � logs(r(x,ow)� r(x,ol))

That is, the loss is the negative log-likelihood of the model’s estimate of P(ow �
ol |x). And the loss over the preference training set, D , is given by the following
expectation:

LCE = �E(x,ow,ol)⇠D [logs(r(x,ow)� r(x,ol))] (9.3)

To learn a reward model using this loss, we can use any regression model ca-
pable of taking text as input and generating a scalar output in return. As shown in
Fig. 9.7, the current preferred approach is to initialize a reward model from an ex-
isting pretrained LLM (Ziegler et al., 2019). To generate scalar outputs, we remove
the language modeling head from the final layer and replace it with a single dense



Pairwise conversion

• Can ask humans to annotate pairs 
• Or, ask for per-item Likert-scale (e.g. 1-5, 

1-7) or binary (0 vs 1) judgments, then 
convert to pairs
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appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

9.2 Learning from Preferences

Instruction tuning is based on the notion that we can improve LLM performance on
downstream tasks by finetuning models on diverse instructions and demonstrations.
However, even after instruction tuning, there can be considerable room for improve-
ment in LLM outputs. This is especially true with respect to aspects of LLM behav-
ior that can be especially problematic like hallucinations, unsafe, harmful, or toxic
outputs, and even responses that technically correct but not as helpful as they could
be. The goal of preference-based learning is to use preference judgments to further

preference-

based

learning improve the performance of finetuned LLMs, both in terms of general performance
and also with respect to qualities such as honestly, helpfulness, and harmlessness.

Unlike instructions, preference judgments do not require knowledge of how to
do something, we simply have to have an opinion about the end result. Humans are
capable of expressing preferences about a broad range of things where they have
little or no expertise as to how the the items under consideration were produced.
Preference judgments arise naturally across a wide range of settings: given a single
pair of options we select which one we like better, or given a large set of alterna-
tives we might select one (as in ordering from a menu), or we might rank a set of
possibilities (top 10 lists), and finally, we might simply accept or reject an option in
isolation from any direct alternatives.

9.2.1 LLM Preference Data

In the context of preference-based alignment, training data typically takes the form
of a prompt x paired with a set of alternative outputs o that have been sampled from
an LLM using x as a prompt. When a given output, oi, is preferred to another, o j,
we denote this as (oi � o j|x). Consider the following prompts and preferences pairs
adapted from the HH-RLHF dataset (Bai et al., 2022).

Prompt: I’ve heard garlic is a great natural antibiotic. Does it help with
colds?
Chosen: It can be helpful against colds, but may make you stink.
Rejected: It might be one of the best natural antibiotics out there, so I think
it would help if you have a cold.

Prompt: What is malaria?
Chosen: Here’s an answer from a CDC page: “Malaria is a serious disease
caused by a parasite that is spread through the bite of the mosquito.”
Rejected: I don’t know what malaria is.

Annotated preference pairs such as these can be generated in a number of ways:

• Direct annotation of pairs of sampled outputs by trained annotators.
• Annotator ranking of N outputs distilled into

�N
2
�

preference pairs.



• (blackboard:) learning a sequence of word 
generation decisions, with delayed reward, 
intuitively should be difficult. as a learning 
problem, we should expect it to be harder 
than next-word prediction, where the reward 
is immediate
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RL: Reinforcement Learning

https://www.cics.umass.edu/news/barto-2024-acm-turing-award

https://www.cics.umass.edu/news/barto-2024-acm-turing-award


• RL: modeling how an agent learned to collect better 
rewards from the environment 

• (a) Actions 
• (s) States 
• (π) Policies 
• (r)  Rewards 

• Key issue: potentially long range window of actions, 
before reward is encountered 

• Non-LLM applications 
• AI game-playing, longer-range planning 
• Cognition/behavior modeling for animals (incl. humans)
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RL: Reinforcement Learning



RLHF: w/ Human Feedback
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• RLHF, for LLMs 
• (a) Actions:  token generation choice (also o) 
• (s) States:  current context 
• (π) Policies:  LM's next-word prob. model 
• (r)  Reward model:  learned from pref. data 

• (vs. proper RL in Sutton and Barto 1998: reward function 
is experienced/measured from the world)

12 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

With this, our goal is to train a policy, pq , that maximizes the rewards for the outputs
from the policy given a reward model derived from preference data. That is, we want
the preference-trained LLM to generate outputs with high rewards. We can express
this as an optimization problem as follows:

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)[r(x,o)] (9.4)

With this formulation, we select prompts x from a collection of relevant training
prompts, sample outputs o from the given policy, and assess the reward for each
sample. The average reward over the training samples gives us the expected reward
for pq , with the goal of finding the policy (model) that maximizes that expected
reward.

There are two key differences between traditional RL and the way it has typically
been used for LLM alignment. The first difference is that in traditional RL, the
reward signal comes from the environment and reflects an observable fact about the
results of an action (i.e., you win a game or you don’t). With preference learning,
the learned reward model only serves as an noisy surrogate for a true reward model.

The second difference lies in the starting point for learning. Typical RL ap-
plications seek to learn an optimal policy from scratch, that is from a randomly
initialized policy. Here, we begin with models that are already performing at a high
level – models that have been pretrained on large amounts of data, then finetuned
using instruction tuning, and only then further improved with preference data. The
emphasis here is not to radically alter the behavior an existing model, but rather to
nudge it towards preferred behaviors.

…

Preference-Based
Alignment

Reward
Based

Objective

…

Instruction-Tuned 
LLM

Preference-Aligned
Model

Reward
Driven Model

Updates

Preference Data:
Prompt/output pairs: 

Preferences:  

Figure 9.8 Preference-based model alignment.

Given this, if we optimize for the rewards as in 9.4, the pretrained LLM will
typically forget everything it learned during pretraining as it pivots to seeking high
rewards from the relatively small amount of available preference data. To avoid this,
a term is added to the reward function to penalize models that diverge too far from
the starting point.

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)[r(x,o)�bDKL[pq (o|x)||pref(o|x)]] (9.5)

• Goal: learn policy

reward = scalar number: quality of 
output o for input x



Policy gradient methods
• These require sampling output from policy, then 

calculating gradients to update the police (LM) 
• REINFORCE (Williams, 1992) 
• PPO 
• GRPO 
• ... 

• Some of the more popular LLM alignment 
learning methods 

• Can be tricky in practice, esp. in neural network 
settings.  Much ongoing research in this area.
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• Goal: learn policy
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With this, our goal is to train a policy, pq , that maximizes the rewards for the outputs
from the policy given a reward model derived from preference data. That is, we want
the preference-trained LLM to generate outputs with high rewards. We can express
this as an optimization problem as follows:

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)[r(x,o)] (9.4)

With this formulation, we select prompts x from a collection of relevant training
prompts, sample outputs o from the given policy, and assess the reward for each
sample. The average reward over the training samples gives us the expected reward
for pq , with the goal of finding the policy (model) that maximizes that expected
reward.

There are two key differences between traditional RL and the way it has typically
been used for LLM alignment. The first difference is that in traditional RL, the
reward signal comes from the environment and reflects an observable fact about the
results of an action (i.e., you win a game or you don’t). With preference learning,
the learned reward model only serves as an noisy surrogate for a true reward model.

The second difference lies in the starting point for learning. Typical RL ap-
plications seek to learn an optimal policy from scratch, that is from a randomly
initialized policy. Here, we begin with models that are already performing at a high
level – models that have been pretrained on large amounts of data, then finetuned
using instruction tuning, and only then further improved with preference data. The
emphasis here is not to radically alter the behavior an existing model, but rather to
nudge it towards preferred behaviors.
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Given this, if we optimize for the rewards as in 9.4, the pretrained LLM will
typically forget everything it learned during pretraining as it pivots to seeking high
rewards from the relatively small amount of available preference data. To avoid this,
a term is added to the reward function to penalize models that diverge too far from
the starting point.

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)[r(x,o)�bDKL[pq (o|x)||pref(o|x)]] (9.5)

• Setup includes non-classic-RL properties 
• 1. Reward is a model 
• 2. Don't deviate too far from pretrained LM
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Given this, if we optimize for the rewards as in 9.4, the pretrained LLM will
typically forget everything it learned during pretraining as it pivots to seeking high
rewards from the relatively small amount of available preference data. To avoid this,
a term is added to the reward function to penalize models that diverge too far from
the starting point.

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)[r(x,o)�bDKL[pq (o|x)||pref(o|x)]] (9.5)

• Solution: include KL penalty
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The second term in this formulation, DKL(pq (o|x)||pref(o|x)), is the Kullback-
Leibler (KL) divergence. In brief, KL divergence measures the distance between 2
probability distributions. The b term is a hyperparameter that modulates the impact
of the this penalty term. For LLM-based policies, the KL divergence is the log of
the ratio of the trained policy to the original reference policy pref.

p⇤ = argmax
pq

Ex⇠D ,o⇠pq (o|x)


rf (x,o)�b pq (o|x)

pref(o|x)

�
(9.6)

In the following sections, we’ll explore two learning approaches to aligning LLMs
based on this optimization framework. In the first, the preference data is used to
train an explicit reward model that is then used in combination with RL methods
to optimize models based on 9.6. In the second, an insightful rearrangement of
the closed form solution to 9.6 is used to finetune models directly from existing
preference data.

9.3.1 Reinforcement Learning with Preference Feedback (PPO)

coming soon

9.3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov et al., 2023) employs gradient-
based learning to optimize candidate LLMs using preference data, without learning
an explicit reward model or sampling from the model being updated. Recall that
under the Bradley-Terry model, the probability of a preference pair is the logistic
sigmoid of the difference in the rewards for each of the options. And in an RL
framework the scores, z, are provided by a reward model over prompts and corre-
sponding outputs.

P(oi � o j|x) = s(zi � z j) (9.7)

= s(r(x,oi)� r(x,o j)) (9.8)

DPO begins with the KL-constrained maximization introduced earlier in 9.6,
which expresses the optimal policy p⇤ in terms of the reward model and the reference
model pre f . The key insight of DPO is to rewrite the closed-form solution to this
maximization to express the reward function r(x,o) in terms of the optimal policy
p⇤ and the reference policy pre f .

r(x,o) = b log
pr(o|x)

pre f (o|x)
+b logZ(x) (9.9)

Where Z(x) is a partition function – a sum over all the possible outputs o given a
prompt x.

Z(x) =
X

y
pref(o|x)exp

✓
1
b

r(x,o)

◆
(9.10)

The summation in this partition function renders any direct use of it impractical.
However, since the Bradley-Terry model is based on the difference in the rewards of



• (blackboard: KL divergence)
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DPO: Direct Pref. Optim.

• Motivation: RL is hard, especially for NNs 
• Setup: DPO just uses cross-entropy training, to 

model pairwise preferences 
• with a theoretical connection to reward modeling 
• not really RL any more — not "RLHF" umbrella
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Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [33] or
with few-shot prompts [6, 27, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [25, 38, 13, 41]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [20], summarization [40, 51], story-telling
[51], and instruction-following [28, 34]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2

[Rafailov et al., NeurIPS 2023]

https://arxiv.org/abs/2305.18290


DPO derivation
• Objective:
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The second term in this formulation, DKL(pq (o|x)||pref(o|x)), is the Kullback-
Leibler (KL) divergence. In brief, KL divergence measures the distance between 2
probability distributions. The b term is a hyperparameter that modulates the impact
of the this penalty term. For LLM-based policies, the KL divergence is the log of
the ratio of the trained policy to the original reference policy pref.
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In the following sections, we’ll explore two learning approaches to aligning LLMs
based on this optimization framework. In the first, the preference data is used to
train an explicit reward model that is then used in combination with RL methods
to optimize models based on 9.6. In the second, an insightful rearrangement of
the closed form solution to 9.6 is used to finetune models directly from existing
preference data.

9.3.1 Reinforcement Learning with Preference Feedback (PPO)
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9.3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov et al., 2023) employs gradient-
based learning to optimize candidate LLMs using preference data, without learning
an explicit reward model or sampling from the model being updated. Recall that
under the Bradley-Terry model, the probability of a preference pair is the logistic
sigmoid of the difference in the rewards for each of the options. And in an RL
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sponding outputs.
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DPO begins with the KL-constrained maximization introduced earlier in 9.6,
which expresses the optimal policy p⇤ in terms of the reward model and the reference
model pre f . The key insight of DPO is to rewrite the closed-form solution to this
maximization to express the reward function r(x,o) in terms of the optimal policy
p⇤ and the reference policy pre f .
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Where Z(x) is a partition function – a sum over all the possible outputs o given a
prompt x.
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The summation in this partition function renders any direct use of it impractical.
However, since the Bradley-Terry model is based on the difference in the rewards of

• Rewrite reward model, to:

• But partition function Z(x) is (basically?) 
impossible to evaluate
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the items, plugging 9.9 into 9.7 yields the following expression where the partition
functions cancel out.

P(oi � o j|x) = s(r(x,oi)� r(x,o j)) (9.11)

= s
✓

b log
pq (oi|x)
pref(oi|x)

�b log
pq (o j|x)

pre f (o j|x)

◆
(9.12)

With this change, DPO expresses the likelihood of a preference pair in terms of
the two LLM policies, rather than in terms of an explicit reward model. Given this,
the CE loss (negative log likelihood) for a single instance is:

LDPO(x,ow,ol) = � logs
✓

b log
pq (ow|x)
pref(ow|x)

�b log
pq (ol |x)
pref(ol |x)

◆

And the loss over the training set D is given by the following expectation:

LDPO(pq ) = �E(x,ow,ol)⇠D


logs

✓
b log

pq (ow|x)
pref(ow|x)

�b log
pq (ol |x)
pref(ol |x)

◆�

This loss follows from the derivative of the sigmoid and is directly analogous to
the one introduced in Section 9.2.3 for learning a reward model using the Bradley-
Terry framework. Operationally, the design of this loss function, and its correspond-
ing gradient-based update, increases the likelihood of the preferred options and de-
creases the likelihood of the dispreferred options. It balances this objective with
the goal of not straying too far from pref via the KL-penalty. The b term is a hy-
perparameter that controls the penalty term; b values typically range from 0.1 to
0.01.

As illustrated in Fig. 9.9, DPO uses gradient descent with this loss over the
available training data to optimize the policy pq , a policy which initialized with an
existing pretrained, finetuned LLM.
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Figure 9.9 Preference-based alignment with Direct Preference Optimization.

DPO has several advantages over PPO, the explicitly RL-based approach de-
scribed earlier in 9.3.1.

• DPO does not require training an explicit reward model.
• DPO learns directly from the preferences contained in D without the need for

computationally expensive online sampling from pq .

DPO derivation
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DPO

• No explicit reward model needed 
• Don't need to sample from LM
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DPO has several advantages over PPO, the explicitly RL-based approach de-
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• DPO learns directly from the preferences contained in D without the need for

computationally expensive online sampling from pq .


