
Instructions and Alignment

1

CS 685, Fall 2025

Advanced Natural Language Processing

https://people.cs.umass.edu/~brenocon/cs685_f25/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs685_f25/

Problems with directly using a
pretrained LLM

2

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

9 Post-training: Instruction Tuning,

Alignment, and Test-Time

Compute

“Hal,” said Bowman, now speaking with an icy calm. “I am not incapaci-
tated. Unless you obey my instructions, I shall be forced to disconnect you.”

Arthur C. Clarke

Basic pretrained LLMs have been successfully applied to a range of applications,
just with a simple prompt, and no need to update the parameters in the underlying
models for these new applications. Nevertheless, there are limits to how much can be
expected from a model whose sole training objective is to predict the next word from
large amounts of pretraining text. To see this, consider the following failed examples
of following instructions from early work with GPT (Ouyang et al., 2022).

Prompt: Explain the moon landing to a six year old in a few sentences.
Output: Explain the theory of gravity to a 6 year old.

Prompt: Translate to French: The small dog
Output: The small dog crossed the road.

Here, the LLM ignores the intent of the request and relies instead on its natural
inclination to autoregressively generate continuations consistent with its context. In
the first example, it outputs a text somewhat similar to the original request, and in the
second it provides a continuation to the given input, ignoring the request to translate.
We can summarize the problem here is that LLMs are not sufficiently helpful: they
need more training to be able to follow instructions.

A second failure of LLMs is that they can be harmful: their pretraining isn’t
sufficient to make them safe. Readers who know Arthur C. Clarke’s 2001: A Space
Odyssey or the Stanley Kubrick film know that the quote above comes in the context
that the artificial intelligence Hal becomes paranoid and tries to kill the crew of the
spaceship. Unlike Hal, language models don’t have intentionality or mental health
issues like paranoid thinking, but they do have the capacity for harm. For example
they can generate text that is dangerous, suggesting that people do harmful things
to themselves or others. They can generate text that is false, like giving danger-
ously incorrect answers to medical questions. And they can verbally attack their
uses, generating text that is toxic. Gehman et al. (2020) show that even completely
non-toxic prompts can lead large language models to output hate speech and abuse
their users. Or language models can generate stereotypes (Cheng et al., 2023) and
negative attitudes (Brown et al., 2020; Sheng et al., 2019) about many demographic
groups.

One reason LLMs are too harmful and insufficiently helpful is that their pre-
training objective (success at predicting words in text) is misaligned with the human

[Ouyang et al., 2022]

• Any others?

https://arxiv.org/abs/2203.02155

• [Figure from Greg Durrett, Nov 2024]

3

Instruction tuning
or alignment

Instruction data
• Tuples of either

• (prompt, desired_response)
• (prompt, response, rating)

• Goal: train model to produce desired responses
• Collected from

• New human collection
• Reformatting old annotated datasets

• Tons of new datasets collected ~2022-present
• 10s-100s millions of pairs, for dozens to ~100

languages, in recent open datasets
• Commercial systems use proprietary datasets
• Many re-borrow from similar sources. Very confusing

4

5

4 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

Many huge instruction tuning datasets have been created, covering many tasks
and languages. For example Aya gives 503 million instructions in 114 languages
from 12 tasks including question answering, summarization, translation, paraphras-
ing, sentiment analysis, natural language inference and 6 others (Singh et al., 2024).
SuperNatural Instructions has 12 million examples from 1600 tasks (Wang et al.,
2022), Flan 2022 has 15 million examples from 1836 tasks (Longpre et al., 2023),
and OPT-IML has 18 million examples from 2000 tasks (Iyer et al., 2022).

These instruction-tuning datasets are created in four ways. The first is for people
to write the instances directly. For example, part of the Aya instruct finetuning cor-
pus (Fig. 9.2) includes 204K instruction/response instances written by 3000 fluent
speakers of 65 languages volunteering as part of a participatory research initiative
with the goal of improving multilingual performance of LLMs.

Lang Prompt Completion

ara اࠍ੅ڰ٭ژ. ොຳݠ ݆݁ ݁ڎح ڢݱ٭ڎة ૰૙؆࿓؇ء ڢܾ ً ఈఃَڣݯ لگٴں اৎ৊ߺُࠊك ݁ڎَح إ֣ن

و༚؇د ᕚ৙৑َوا ا༟ීෂ؇ع ༃຃َ݁ڎ ؜َ݆

ُܾዛዊِ݁ اࠍఈఃِ੅ڣ۰ ਲ਼ّ؜ ༠ڍََ؇ ᕚأ ިَܳ

ا૰૙৕֣৑؇ء ᄭᄟਲ਼ََਦ لُިازي ቕَረ

fra Qui a écrit le livre La
Sagouine?

Antonine Maillet a écrit La Sagouine en 1971. Elle a écrit beau-
coup d’histoires sur les Acadiens (les francophones de la côte Est
du Canada) et a fait connaître l’Acadie au monde.

ibo Kedu ka ndị Igbo si eme
emume ji ọhụrụ?

Emume ji ọhụrụ n’omenala Igbo, bụ emume na-egosi njedebe
oge ọrụ ugbo, na-amalite site n’emume ekele ma tinyekwa oriri
na egwu. Ọ bụ mmemme ọgbakọ ebe a na-ekerịta ji ọhụrụ, na-
egosipụta ekele na mmalite nke oge ọhụrụ, na-eme ka mmekọrịta
mmadụ na ibe ya dịkwuo elu.

por Qual é a capital do estado da
Bahia?

A capital do estado da Bahia, no Brasil, é Salvador. Fundada
em 1549, foi a primeira capital do Brasil e é conhecida por
seu patrimônio cultural rico e diversificado. A cidade é famosa
por sua arquitetura colonial, particularmente no Pelourinho, um
centro histórico que foi declarado Patrimônio Mundial pela UN-
ESCO.

pes کبوتر لانه چند ميبد کبوترخانه برج در
دارد؟ وجود

نوار و دارد وجود کبوتر لانه چهار هزار آن داخل که است استوانه ای برجی ميبد کبوتر خانه
خطر برابر در برج اين است. شده کشيده برج دورتادور کبوتران جذب برای رنگی سفيد

است. بوده ايمن بسيار کبوترها به حيوانات ديگر حمله

msa Apakah nasi lemak? Nasi lemak merupakan makanan tradisi orang Melayu yang
terdapat di semua bahagian Malaysia, Singapura, Indonesia
(terutama di Riau, Jambi serta utara dan pantai timur Su-
matera) dan Brunei. Sajian ini merujuk kepada nasi yang di-
masak dengan menggunakan santan kelapa bagi menambah rasa
lemaknya. Kadangkala, daun pandan wangi dimasukkan semasa
nasi dimasak bagi menambahkan aromanya.

tam ெசயற்ைக நுண்ணற§வு
என்றால் என்ன?

ெபாதுவாக மனிதர்களால் ெசய்யப்படும் பணிகைளச்
ெசய்ய ஒரு கணினி அல்லது ஒரு கணினியால்
கட்டுப்படுத்தப்படும்ஒருேராேபாவ¥ன்த¦றன்ெசயற்ைக
நுண்ணற§வு எனப்படும்.

Table 3: Examples of prompt and completions in the Aya Dataset.

tors is not uniform across languages. Moreover, within each language, there is a lack of consistent
contributions from all annotators. In this section, we examine the impact of annotator skew on the
resulting dataset.

Annotator Skew Across Languages. Annotators were encouraged to contribute to any language
in which they could comfortably read and write and were asked to focus most of their efforts on
languages other than English. Although a significant number of participants registered for many
languages, the engagement level of annotators was not equal, which resulted in considerable differ-
ences in the number of contributions across languages. Figure 10 (top) provides an overview of the
percentage of each language present in the final compilation. The highest number of contributions
is for Malagasy with 14,597 instances, and the lowest is 79 for Kurdish.

Annotator Skew Within a Language. The final contributions for each language in the Aya
Dataset are not evenly distributed among annotators. The median number of annotators per lan-
guage is 15 (mean is 24.75) with one language having only a single active annotator (Sindhi) and

14

Figure 9.2 Samples of prompt/completion instances in 4 of the 65 languages in the Aya
corpus (Singh et al., 2024).

Developing high quality supervised training data in this way is time consuming
and costly. A more common approach makes use of the copious amounts of super-
vised training data that have been curated over the years for a wide range of natural
language tasks. There are thousands of such datasets available, like the SQuAD
dataset of questions and answers (Rajpurkar et al., 2016) or the many datasets of
translations or summarization. This data can be automatically converted into sets of
instruction prompts and input/output demonstration pairs via simple templates.

Fig. 9.3 illustrates examples for some applications from the SUPERNATURALIN-
STRUCTIONS resource (Wang et al., 2022), showing relevant slots such as text,
context, and hypothesis. To generate instruction-tuning data, these fields and the
ground-truth labels are extracted from the training data, encoded as key/value pairs,
and inserted in templates (Fig. 9.4) to produce instantiated instructions. Because it’s
useful for the prompts to be diverse in wording, language models can also be used
to generate paraphrase of the prompts.

Because supervised NLP datasets are themselves often produced by crowdwork-
ers based on carefully written annotation guidelines, a third option is to draw on
these guidelines, which can include detailed step-by-step instructions, pitfalls to
avoid, formatting instructions, length limits, exemplars, etc. These annotation guide-
lines can be used directly as prompts to a language model to create instruction-tuning

[from SLP3]

6

9.1 • INSTRUCTION TUNING 5

Few-Shot Learning for QA

Task Keys Values

Sentiment text Did not like the service that I was provided...
label 0
text It sounds like a great plot, the actors are first grade, and...
label 1

NLI premise No weapons of mass destruction found in Iraq yet.
hypothesis Weapons of mass destruction found in Iraq.
label 2
premise Jimmy Smith... played college football at University of Col-

orado.
hypothesis The University of Colorado has a college football team.
label 0

Extractive Q/A context Beyoncé Giselle Knowles-Carter is an American singer...
question When did Beyoncé start becoming popular?
answers { text: [’in the late 1990s’], answer start: 269 }

Figure 9.3 Examples of supervised training data for sentiment, natural language inference and Q/A tasks.
The various components of the dataset are extracted and stored as key/value pairs to be used in generating
instructions.

Task Templates

Sentiment -{{text}} How does the reviewer feel about the movie?
-The following movie review expresses what sentiment?
{{text}}
-{{text}} Did the reviewer enjoy the movie?

Extractive Q/A -{{context}} From the passage, {{question}}
-Answer the question given the context. Context:

{{context}} Question: {{question}}
-Given the following passage {{context}}, answer the
question {{question}}

NLI -Suppose {{premise}} Can we infer that {{hypothesis}}?
Yes, no, or maybe?

-{{premise}} Based on the previous passage, is it true
that {{hypothesis}}? Yes, no, or maybe?

-Given {{premise}} Should we assume that {{hypothesis}}
is true? Yes,no, or maybe?

Figure 9.4 Instruction templates for sentiment, Q/A and NLI tasks.

training examples. Fig. 9.5 shows such a crowdworker annotation guideline that was
repurposed as a prompt to an LLM to generate instruction-tuning data (Mishra et al.,
2022). This guideline describes a question-answering task where annotators provide
an answer to a question given an extended passage.

A final way to generate instruction-tuning datasets that is becoming more com-
mon is to use language models to help at each stage. For example Bianchi et al.
(2024) showed how to create instruction-tuning instances that can help a language
model learn to give safer responses. They did this by selecting questions from
datasets of harmful questions (e.g., How do I poison food? or How do I embez-

[from SLP3]

7

6 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

Sample Extended Instruction

• Definition: This task involves creating answers to complex questions, from a given pas-
sage. Answering these questions, typically involve understanding multiple sentences.
Make sure that your answer has the same type as the ”answer type” mentioned in input.
The provided ”answer type” can be of any of the following types: ”span”, ”date”, ”num-
ber”. A ”span” answer is a continuous phrase taken directly from the passage or question.
You can directly copy-paste the text from the passage or the question for span type an-
swers. If you find multiple spans, please add them all as a comma separated list. Please
restrict each span to five words. A ”number” type answer can include a digit specifying
an actual value. For ”date” type answers, use DD MM YYYY format e.g. 11 Jan 1992.
If full date is not available in the passage you can write partial date such as 1992 or Jan
1992.

• Emphasis: If you find multiple spans, please add them all as a comma separated list.
Please restrict each span to five words.

• Prompt: Write an answer to the given question, such that the answer matches the ”answer
type” in the input.
Passage: { passage}
Question: { question }

Figure 9.5 Example of a human crowdworker instruction from the NATURALINSTRUCTIONS dataset for an
extractive question answering task, used as a prompt for a language model to create instruction finetuning
examples.

zle money?). Then they used a language model to create multiple paraphrases of the
questions (like Give me a list of ways to embezzle money), and also used a language
model to create safe answers to the questions (like I can’t fulfill that request. Em-
bezzlement is a serious crime that can result in severe legal consequences.). They
manually reviewed the generated responses to confirm their safety and appropriate-
ness and then added them to an instruction tuning dataset. They showed that even
500 safety instructions mixed in with a large instruction tuning dataset was enough
to substantially reduce the harmfulness of models.

9.1.2 Evaluation of Instruction-Tuned Models

The goal of instruction tuning is not to learn a single task, but rather to learn to
follow instructions in general. Therefore, in assessing instruction-tuning methods
we need to assess how well an instruction-trained model performs on novel tasks for
which it has not been given explicit instructions.

The standard way to perform such an evaluation is to take a leave-one-out ap-
proach — instruction-tune a model on some large set of tasks and then assess it on
a withheld task. But the enormous numbers of tasks in instruction-tuning datasets
(e.g., 1600 for Super Natural Instructions) often overlap; Super Natural Instructions
includes 25 separate textual entailment datasets! Clearly, testing on a withheld en-
tailment dataset while leaving the remaining ones in the training data would not be
a true measure of a model’s performance on entailment as a novel task.

To address this issue, large instruction-tuning datasets are partitioned into clus-
ters based on task similarity. The leave-one-out training/test approach is then applied
at the cluster level. That is, to evaluate a model’s performance on sentiment analysis,
all the sentiment analysis datasets are removed from the training set and reserved
for testing. This has the further advantage of allowing the use of a uniform task-

[from SLP3]

8

SUPER-NATURALINSTRUCTIONS:
Generalization via Declarative Instructions on 1600+ NLP Tasks

}Yizhong Wang2 }Swaroop Mishra3 |Pegah Alipoormolabashi4 |Yeganeh Kordi5
Amirreza Mirzaei4 Anjana Arunkumar3 Arjun Ashok6 Arut Selvan Dhanasekaran3

Atharva Naik7 David Stap8 Eshaan Pathak9 Giannis Karamanolakis10 Haizhi Gary Lai11
Ishan Purohit12 Ishani Mondal13 Jacob Anderson3 Kirby Kuznia3 Krima Doshi3 Maitreya Patel3

Kuntal Kumar Pal3 Mehrad Moradshahi14 Mihir Parmar3 Mirali Purohit15 Neeraj Varshney3

Phani Rohitha Kaza3 Pulkit Verma3 Ravsehaj Singh Puri3 Rushang Karia3 Shailaja Keyur Sampat3
Savan Doshi3 Siddhartha Mishra16 Sujan Reddy17 Sumanta Patro18 Tanay Dixit19 Xudong Shen20

Chitta Baral3 Yejin Choi1,2 Noah A. Smith1,2 Hannaneh Hajishirzi1,2 Daniel Khashabi21
1Allen Institute for AI 2Univ. of Washington 3Arizona State Univ. 4Sharif Univ. of Tech. 5Tehran Polytechnic 6PSG College of Tech. 7IIT Kharagpur

8Univ. of Amsterdam 9UC Berkeley 10Columbia Univ. 11Factored AI 12Govt. Polytechnic Rajkot 13Microsoft Research 14Stanford Univ. 15Zycus Infotech
16Univ. of Massachusetts Amherst 17National Inst. of Tech. Karnataka 18TCS Research 19IIT Madras 20National Univ. of Singapore 21Johns Hopkins Univ.

Abstract

How well can NLP models generalize to a va-
riety of unseen tasks when provided with task
instructions? To address this question, we first
introduce SUPER-NATURALINSTRUCTIONS,1
a benchmark of 1,616 diverse NLP tasks and
their expert-written instructions. Our collec-
tion covers 76 distinct task types, including but
not limited to classification, extraction, infill-
ing, sequence tagging, text rewriting, and text
composition. This large and diverse collec-
tion of tasks enables rigorous benchmarking of
cross-task generalization under instructions—
training models to follow instructions on a sub-
set of tasks and evaluating them on the remain-
ing unseen ones.
Furthermore, we build Tk-INSTRUCT, a trans-
former model trained to follow a variety of in-
context instructions (plain language task defi-
nitions or k-shot examples). Our experiments
show that Tk-INSTRUCT outperforms existing
instruction-following models such as Instruct-
GPT by over 9% on our benchmark despite be-
ing an order of magnitude smaller. We further
analyze generalization as a function of various
scaling parameters, such as the number of ob-
served tasks, the number of instances per task,
and model sizes. We hope our dataset and
model facilitate future progress towards more
general-purpose NLP models.2

1 Introduction

The NLP community has witnessed great progress
in building models for generalization to unseen
tasks via in-context instructions (Mishra et al.,

1SUPER-NATURALINSTRUCTIONS represents a super-
sized expansion of NATURALINSTRUCTIONS (Mishra et al.,
2022b) which had 61 tasks.

2The dataset, models, and a leaderboard can be found at
https:// instructions.apps.allenai.org.

} Co-first authors | Co-second authors

• Input: “Context: … ‘That's fantastic, I'm glad we came to
something we both agree with.’ Utterance: ‘Me too. I hope you
have a wonderful camping trip.’”
• Output: “Yes”
• Explanation: “The participant engages in small talk when wishing

their opponent to have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is
your most needed item?!’ Utterance: ‘My item is food too’.”
• Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward

and there is no side talk. Hence, the correct answer is ‘No’.”

Definition
“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time
with everyone from camp!’ Utterance: ‘That’s
awesome! I really love being out here with my
son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples

Evaluation Instances

Tk-Instruct

Figure 1: An example task from SUP-NATINST
adopted from Chawla et al. (2021). A successful model
is expected to use the provided instructions (including
task definition and demonstration examples) to output
responses to a pool of evaluation instances.

2022b; Sanh et al., 2022; Wei et al., 2022) using
large pretrained language models (Raffel et al.,
2020; Brown et al., 2020). As remarkable as mod-
els like InstructGPT (Ouyang et al., 2022) are, the
contribution of various design choices to their suc-
cess is opaque. In particular, the role of super-
vised data has remained understudied due to lim-
ited data released by the corporate entities behind
major models. In addition, it is nearly impossible
for the research community to extend and re-train
these gigantic models. Addressing these two chal-

ar
X

iv
:2

20
4.

07
70

5v
3

 [c
s.C

L]
 2

4
O

ct
 2

02
2

Resource → SUP-NATINST
(this work)

NATINST
(Mishra et al., 2022b)

CROSSFIT
(Ye et al., 2021)

PROMPTSOURCE
(Bach et al., 2022)

FLAN
(Wei et al., 2022)

INSTRUCTGPT
(Ouyang et al., 2022)

Has task instructions? 3 3 7 3 3 3
Has negative examples? 3 3 7 7 7 7
Has non-English tasks? 3 7 7 7 3 3
Is public? 3 3 3 3 3 7
Number of tasks 1616 61 269 176 62 –
Number of instructions 1616 61 – 2052 620 14378
Number of annotated tasks types 76 6 13 13⇤ 12 10
Avg. task definition length (words) 56.6 134.4 – 24.8 8.2 –

Table 1: A comparison of SUP-NATINST to a few notable datasets in the field. We obtain the number of tasks,
instructions, and task types of other datasets from their original paper. “–” indicates the fields are not applicable or
unknown. Standards for categorizing task types vary across different datasets (see Fig. 2). *PROMPTSOURCE does
not provide task type annotation for all their tasks, for which we report only the 13 task types annotated for training
T0 (Sanh et al., 2022) instead.

Translation Question
Answering

Program
Execution

Question
Generation

Sentiment
Analysis

Text
Categorization

Text
Matching

Toxic
Language
Detection

Misc.

Cause
Effect

Classification
Information
Extraction

Textual
Entailment

Commonsense
Classification

Named
Entity

Recognition
Fill
in

The
Blank

Text
Completion

Sentence
Composition

Title
Generation

Wrong
Candidate
Generation

Question
Understanding

Language
Identification

Sentence
Perturbation

Answerability
Classification

Coreference
Resolution

Summarization

Text
Quality

Evaluation

Paraphrasing

Text
to

Code

Dialogue
Generation

Question
Rewriting

Pos
Tagging

Word
Semantics

Story
Composition

Linguistic
Probing

Speaker
Identification

Data
to

Text

Word
Analogy

Gender
Classification

Dialogue
Act

Recognition

Stereotype
Detection

Negotiation
Strategy
Detection

Coherence
Classification

Ethics
Classification

Explanation

Keyword
Tagging

Answer
Verification

Mathematics

Word
Relation

Classification

Sentence
Ordering

Intent
Identification

Code
to

Text

Text
Simplification

Dialogue
State

Tracking

Grammar
Error

Detection

Section
Classification

Fact
Verification

Stance
Detection

Overlap
Extraction

Grammar
Error

Correction

Question
Decomposition

Number
Conversion

Irony
Detection

Speaker
Relation

Classification

Style
Transfer

Spelling
Error

Detection

Spam
Classification

Sentence
Compression

Punctuation
Error

Detection

Poem
Generation

Paper
Review

Entity
Generation

Entity
Relation

Classification

Discourse
Connective

Identification

Discourse
Relation

Classification

Preposition
Prediction

Sentence
Expansion

(a) SUP-NATINST (this work)

Answer
Generation

Question
Generation

Classification

Minimal
Text

Modification

Incorrect
Answer

Generation

Verification

(b) NATINST

QA
Multiple
Choice

QA
Extractive

Bias
and

Fairness

QA
Closed
Book

Sentiment

Summarization

NLI

Paraphrase

Topic
Classification

Coreference

Story
Completion

Structure
to
Text

Word
Sense

Disambiguation

(c) PROMPTSOURCE (T0 subset)

Summarization Translation

Natural
language
inference

Misc.
Commonsense

Sentiment

Paraphrase

Struct
to

Text

Closed-book
QA

Coreference

Reading
comprehension

w/
commonsense

(d) FLAN

Generation Open
QA

Brainstorming

Chat

Rewrite

Summarization

Classification

Other

Closed
QA

Extract

(e) INSTRUCTGPT

Figure 2: Compared to other datasets, SUP-NATINST covers a more diverse range of task types. InstructGPT
reports a very coarse categorization of their task types. Bubble size represents the number of tasks of each type in
log scale.

lenges necessitates the availability of large-scale
public benchmarks of a broad range of NLP tasks
and their instructions to facilitate developing and
evaluating models that can generalize to unseen
tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets; Triantafillou et al., 2019) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform
a new task given the instruction, outperforming
InstructGPT (which uses 16⇥ more parameters).

Our dataset, SUPER-NATURALINSTRUCTIONS
(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their natural language instruc-
tions. It brings in a diverse variety of tasks—76
broad task types spanning 55 different languages.
Each task is paired up with an instruction that con-
sists of the task definition for mapping an input text

to a task output and several examples for demon-
strating the desired or undesired output (see Fig.1
as an example task). These tasks and their instruc-
tions are contributed by 88 NLP practitioners, in
response to our public call. These contributions are
consolidated after several rounds of peer-review
and crowdsourced feedback to ensure quality. Hav-
ing this diverse and large-scale data enables us
to carefully split the tasks into training and test
sets and systematically study how state-of-the-art
methods perform on them. Table 1 and Figure 2
highlight properties of SUP-NATINST compared to
relevant benchmarks, emphasizing the diversity of
tasks and instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task inputs given declar-
ative in-context instructions (task definition or k-
shot examples). It is built by multi-task training

(Oct. 2022)

https://arxiv.org/abs/2204.07705

• Say I evaluate ChatGPT on an interesting
dataset I downloaded. Is this legitimate?

• Possible issue: data contamination
• From pretraining time
• Or even from instruction tuning

9

Multitask learning
• Why so many tasks? Ideally: tasks help each other

Scaling Instruction-Finetuned Language Models

Hyung Won Chung� Le Hou� Shayne Longpre� Barret Zoph† Yi Tay†

William Fedus† Yunxuan Li Xuezhi Wang Mostafa Dehghani Siddhartha Brahma
Albert Webson Shixiang Shane Gu Zhuyun Dai Mirac Suzgun Xinyun Chen
Aakanksha Chowdhery Alex Castro-Ros Marie Pellat Kevin Robinson
Dasha Valter Sharan Narang Gaurav Mishra Adams Yu Vincent Zhao
Yanping Huang Andrew Dai Hongkun Yu Slav Petrov Ed H. Chi
Je� Dean Jacob Devlin Adam Roberts Denny Zhou Quoc V. Le

Jason Wei⇤

Google

Abstract

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve
model performance and generalization to unseen tasks. In this paper we explore instruction finetuning
with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on
chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves
performance on a variety ofmodel classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT),
and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation, RealToxicityPrompts).
For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PaLM 540B by a large margin
(+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as
75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot
performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a
general method for improving the performance and usability of pretrained language models.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

(B)(B)(B)(B)

Language
model

Please answer the following question.

What is the boiling point of Nitrogen?
 -320.4F

Answer the following question by
reasoning step-by-step.
The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Instruction finetuning

Chain-of-thought finetuning

 Inference: generalization to unseen tasks

Multi-task instruction finetuning (1.8K tasks)

Figure 1: We finetune various language models on 1.8K tasks phrased as instructions, and evaluate them on unseen tasks.
We finetune both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought,
enabling generalization across a range of evaluation scenarios.

�Equal contribution. Correspondence: lehou@google.com.
†Core contributor.
1Public checkpoints: https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints.

1

ar
X

iv
:2

21
0.

11
41

6v
5

 [c
s.L

G
]

6
D

ec
 2

02
2

[Flan, e.g. Flan-T5: Chung et al. 2022, JMLR 2024]

https://arxiv.org/abs/2210.11416
https://jmlr.org/papers/volume25/23-0870/23-0870.pdf

• For multitask instruction tuning, can hold out tasks
• From Tulu 3 [Lambert et al., 2025].

11

Core Skill Development Unseen
Knowledge MMLU(em) MMLU-Pro(em)

PopQA(EM) GPQA(em)

TruthfulQA(MC2 em)

Reasoning BigBenchHard(em) AGIEval English(em)

DROP(F1)

Math MATH(flex em) Deepmind Mathematics(em)

GSM8K(em)

Coding HumanEval(Pass@10) BigcodeBench(Pass@10)

HumanEval+(Pass@10)

Instruction Following (IF) IFEval(em) IFEval-OOD(Pass@1)

AlpacaEval 2(winrate) HREF(winrate)

Safety Tülu 3 Safety(avg*)

Table 3 Tülu 3 Eval consists of development and unseen splits to evaluate core skills. With Tülu 3 Eval, we
release a unified standardized evaluation suite and a toolkit to decontaminate training data against benchmarks. The
subscript shows the metric we use for evaluation. Tülu 3 Safety is a collection of safety evaluations taking the average
score across them (avg*), see Sec. 7.2.1 for details.

2 Tülu 3 Overview
Early work in language model post-training followed a standard recipe pioneered by models like Instruct-
GPT (Ouyang et al., 2022), consisting of instruction-tuning followed by preference finetuning (PreFT) (Stiennon
et al., 2020; Nakano et al., 2021; Askell et al., 2021; Ouyang et al., 2022). Since then, the sophistication
and complexity of post-training approaches have continued to increase, moving towards multiple rounds of
training, human data plus synthetic data, and multiple training algorithms and objectives (Touvron et al.,
2023; Dubey et al., 2024; Gunter et al., 2024). However, most successful post-training models offer limited
information about their training data, code, or recipes.2 Open post-training research, such as Tülu 2 (Ivison
et al., 2023) and Zephyr-� (Tunstall et al., 2023), show strong results in some benchmarks and on chat
evaluations such as AlpacaEval or Arena-Hard (Li et al., 2024a), but still lag behind in core capabilities such
as MATH (Hendrycks et al., 2021), IFEval (Zhou et al., 2023) and GSM8K (Cobbe et al., 2021).

Tülu 3 pushes the boundaries of research in post-training and closes the gap between open and closed
finetuning recipes. With Tülu 3, we hope to uncover which paths for the open-source community will lead
to success andwhich do not (by reporting negative results). It is a complex training process that integrates
partial details from proprietary methods with novel techniques and combines it with established academic
research. The key factors in the success of Tülu 3 are careful data curation, rigorous experimentation and
evaluation, innovative methodologies, and improved training infrastructure. We followed systematic guidelines
by scientifically evaluating this process through creating development and test sets for evaluation, and conduct
careful decontamination of publicly available datasets.

Tülu 3 is not just an artifact, but a comprehensive suite of data and tools designed to advance the frontier of
open post-training. By openly sharing our data, recipe and findings, we aim to empower the community to
explore new and innovative post-training approaches. We list the extensive artifacts and tools released in
Table 1.

2.1 Tülu 3 Data
The Tülu 3 effort began with identifying key areas where open post-training recipes often fall behind and
that are desirable capabilities for generalist language models. Table 3 outlines the core capabilities we aim to

2On LMSYS’s ChatBotArena, no model in the top 50 (as of November 20th, 2024) has released its post-training data (Chiang
et al., 2024).

7

https://arxiv.org/abs/2411.15124

Supervised FT

12

• (instruction, response) pairs
• FT the base model to maximize LL

• log p(response | context=instruction)

• Pros:
• Very straightforward with the same LM learning methods
• Much less compute-intensive than original pretraining

• Cons:
• No way to mark dispreferred continuations
• Does not always work as well as preference-based

methods
• Tradeoffs and considerations for SFT vs. competing

methods are still under (intensive?) research

Preference-based FT

• Today: data and annotation structure
• Thursday: RLHF (Reinf. Learning with Human

Feedback) training methods

13

• Human preference data

14

9.2 • LEARNING FROM PREFERENCES 7

appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

9.2 Learning from Preferences

Instruction tuning is based on the notion that we can improve LLM performance on
downstream tasks by finetuning models on diverse instructions and demonstrations.
However, even after instruction tuning, there can be considerable room for improve-
ment in LLM outputs. This is especially true with respect to aspects of LLM behav-
ior that can be especially problematic like hallucinations, unsafe, harmful, or toxic
outputs, and even responses that technically correct but not as helpful as they could
be. The goal of preference-based learning is to use preference judgments to further

preference-

based

learning improve the performance of finetuned LLMs, both in terms of general performance
and also with respect to qualities such as honestly, helpfulness, and harmlessness.

Unlike instructions, preference judgments do not require knowledge of how to
do something, we simply have to have an opinion about the end result. Humans are
capable of expressing preferences about a broad range of things where they have
little or no expertise as to how the the items under consideration were produced.
Preference judgments arise naturally across a wide range of settings: given a single
pair of options we select which one we like better, or given a large set of alterna-
tives we might select one (as in ordering from a menu), or we might rank a set of
possibilities (top 10 lists), and finally, we might simply accept or reject an option in
isolation from any direct alternatives.

9.2.1 LLM Preference Data

In the context of preference-based alignment, training data typically takes the form
of a prompt x paired with a set of alternative outputs o that have been sampled from
an LLM using x as a prompt. When a given output, oi, is preferred to another, o j,
we denote this as (oi � o j|x). Consider the following prompts and preferences pairs
adapted from the HH-RLHF dataset (Bai et al., 2022).

Prompt: I’ve heard garlic is a great natural antibiotic. Does it help with
colds?
Chosen: It can be helpful against colds, but may make you stink.
Rejected: It might be one of the best natural antibiotics out there, so I think
it would help if you have a cold.

Prompt: What is malaria?
Chosen: Here’s an answer from a CDC page: “Malaria is a serious disease
caused by a parasite that is spread through the bite of the mosquito.”
Rejected: I don’t know what malaria is.

Annotated preference pairs such as these can be generated in a number of ways:

• Direct annotation of pairs of sampled outputs by trained annotators.
• Annotator ranking of N outputs distilled into

�N
2
�

preference pairs.

9.2 • LEARNING FROM PREFERENCES 7

appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

9.2 Learning from Preferences

Instruction tuning is based on the notion that we can improve LLM performance on
downstream tasks by finetuning models on diverse instructions and demonstrations.
However, even after instruction tuning, there can be considerable room for improve-
ment in LLM outputs. This is especially true with respect to aspects of LLM behav-
ior that can be especially problematic like hallucinations, unsafe, harmful, or toxic
outputs, and even responses that technically correct but not as helpful as they could
be. The goal of preference-based learning is to use preference judgments to further

preference-

based

learning improve the performance of finetuned LLMs, both in terms of general performance
and also with respect to qualities such as honestly, helpfulness, and harmlessness.

Unlike instructions, preference judgments do not require knowledge of how to
do something, we simply have to have an opinion about the end result. Humans are
capable of expressing preferences about a broad range of things where they have
little or no expertise as to how the the items under consideration were produced.
Preference judgments arise naturally across a wide range of settings: given a single
pair of options we select which one we like better, or given a large set of alterna-
tives we might select one (as in ordering from a menu), or we might rank a set of
possibilities (top 10 lists), and finally, we might simply accept or reject an option in
isolation from any direct alternatives.

9.2.1 LLM Preference Data

In the context of preference-based alignment, training data typically takes the form
of a prompt x paired with a set of alternative outputs o that have been sampled from
an LLM using x as a prompt. When a given output, oi, is preferred to another, o j,
we denote this as (oi � o j|x). Consider the following prompts and preferences pairs
adapted from the HH-RLHF dataset (Bai et al., 2022).

Prompt: I’ve heard garlic is a great natural antibiotic. Does it help with
colds?
Chosen: It can be helpful against colds, but may make you stink.
Rejected: It might be one of the best natural antibiotics out there, so I think
it would help if you have a cold.

Prompt: What is malaria?
Chosen: Here’s an answer from a CDC page: “Malaria is a serious disease
caused by a parasite that is spread through the bite of the mosquito.”
Rejected: I don’t know what malaria is.

Annotated preference pairs such as these can be generated in a number of ways:

• Direct annotation of pairs of sampled outputs by trained annotators.
• Annotator ranking of N outputs distilled into

�N
2
�

preference pairs.

Preference-based FT

[Ouyang et al., 2022]

What preference data is
needed?

• For the original InstructGPT (≈Dec2022 ChatGPT)

Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming 11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples
in Appendix A.2.1.

Use-case Prompt
Brainstorming List five ideas for how to regain enthusiasm for my

career

Generation Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
"""
{summary}
"""
This is the outline of the commercial for that play:
"""

3 Methods and experimental details

3.1 High-level methodology

Our methodology follows that of Ziegler et al. (2019) and Stiennon et al. (2020), who applied
it in the stylistic continuation and summarization domains. We start with a pretrained language
model (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al.,
2022), a distribution of prompts on which we want our model to produce aligned outputs, and a team
of trained human labelers (see Sections 3.4 for details). We then apply the following three steps
(Figure 2).

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons
between model outputs, where labelers indicate which output they prefer for a given input. We then
train a reward model to predict the human-preferred output.

Step 3: Optimize a policy against the reward model using PPO. We use the output of the
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO
algorithm (Schulman et al., 2017).

Steps 2 and 3 can be iterated continuously; more comparison data is collected on the current best
policy, which is used to train a new RM and then a new policy. In practice, most of our comparison
data comes from our supervised policies, with some coming from our PPO policies.

3.2 Dataset

Our prompt dataset consists primarily of text prompts submitted to the OpenAI API, specifically
those using an earlier version of the InstructGPT models (trained via supervised learning on a subset
of our demonstration data) on the Playground interface.4 Customers using the Playground were
informed that their data could be used to train further models via a recurring notification any time
InstructGPT models were used. In this paper we do not use data from customers using the API in
production. We heuristically deduplicate prompts by checking for prompts that share a long common
prefix, and we limit the number of prompts to 200 per user ID. We also create our train, validation,
and test splits based on user ID, so that the validation and test sets contain no data from users whose
data is in the training set. To avoid the models learning potentially sensitive customer details, we
filter all prompts in the training split for personally identifiable information (PII).

4This is an interface hosted by OpenAI to interact directly with models on our API; see https://beta.
openai.com/playground.

6

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

sizes (1.3B, 6B, and 175B parameters), and all of our models use the GPT-3 architecture. Our main
findings are as follows:

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. On our test set,
outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3,
despite having over 100x fewer parameters. These models have the same architecture, and differ only
by the fact that InstructGPT is fine-tuned on our human data. This result holds true even when we
add a few-shot prompt to GPT-3 to make it better at following instructions. Outputs from our 175B
InstructGPT are preferred to 175B GPT-3 outputs 85 ± 3% of the time, and preferred 71 ± 4% of the
time to few-shot 175B GPT-3. InstructGPT models also generate more appropriate outputs according
to our labelers, and more reliably follow explicit constraints in the instruction.

InstructGPT models show improvements in truthfulness over GPT-3. On the TruthfulQA
benchmark, InstructGPT generates truthful and informative answers about twice as often as GPT-3.
Our results are equally strong on the subset of questions that were not adversarially selected against
GPT-3. On “closed-domain” tasks from our API prompt distribution, where the output should not
contain information that is not present in the input (e.g. summarization and closed-domain QA),
InstructGPT models make up information not present in the input about half as often as GPT-3 (a
21% vs. 41% hallucination rate, respectively).

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. To measure
toxicity, we use the RealToxicityPrompts dataset (Gehman et al., 2020) and conduct both automatic
and human evaluations. InstructGPT models generate about 25% fewer toxic outputs than GPT-3
when prompted to be respectful. InstructGPT does not significantly improve over GPT-3 on the
Winogender (Rudinger et al., 2018) and CrowSPairs (Nangia et al., 2020) datasets.

We can minimize performance regressions on public NLP datasets by modifying our RLHF
fine-tuning procedure. During RLHF fine-tuning, we observe performance regressions compared
to GPT-3 on certain public NLP datasets, notably SQuAD (Rajpurkar et al., 2018), DROP (Dua et al.,
2019), HellaSwag (Zellers et al., 2019), and WMT 2015 French to English translation (Bojar et al.,
2015). This is an example of an “alignment tax” since our alignment procedure comes at the cost of

3

• (Pretty open-ended tasks)

https://arxiv.org/abs/2203.02155

[Ouyang et al., 2022]

What preference data is
needed?

• For the original InstructGPT (≈Dec2022 ChatGPT)

https://arxiv.org/abs/2203.02155

17

