
Fine-tuning LLMs

CS 685, Fall 2025

Advanced Natural Language Processing

https://people.cs.umass.edu/~brenocon/cs685_f25/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs685_f25/

• project proposals!

2

Talks this week, for EC
• Wed: at the NLP seminar

• https://nlp.cs.umass.edu/seminar/

• Alisa Liu, University of Washington, “Between
Language and Models: Rethinking
Algorithms for Tokenization.”

3

• Abstract: Language models operate over real numbers, while users of language models interface with
human-readable text. This is made possible by tokenization, which encodes text as a sequence of
embeddings and decodes real-valued predictions back into generated text. Despite its foundation importance
to language modeling, the algorithms for tokenization have remained largely unchanged in the era of LLMs.
In this talk, I will discuss my recent work in improving algorithms for tokenization. The first half presents
SuperBPE, a superword tokenizer that extends traditional subword tokenization to include tokens that span
multiple words. We motivate superword tokens from a linguistic perspective, and demonstrate empirically that
models pretrained from scratch with SuperBPE achieve stronger performance on downstream tasks while
also being significantly more efficient at inference-time. The second half revisits a fundamental limitation of
tokenizer-based LMs: models trained over sequences of tokens cannot, out of the box, model the probability
of arbitrary strings. I discuss the practical implications of this in domains such as Chinese and code, and then
present an inference-time algorithm that converts LM-predicted probabilities over tokens into probabilities
over characters, while preserving the sampling distribution at the text level. I will conclude by discussing open
questions on the future of tokenization.

• Related papers: SuperBPE: Space travel for language models (Liu et al., COLM 2025) and Sampling from
your language model one byte at a time (Hayase et al., arxiv 2025).

https://nlp.cs.umass.edu/seminar/

Talks this week, for EC
• Fri: visitor Tal Linzen at the linguistics colloq.!

4

---------- Forwarded message ---------
From: Carla Spellerberg <cspellerberg@umass.edu>
Date: Mon, Oct 13, 2025 at 10:02 PM
Subject: UMass Linguistics Colloquium - Tal Linzen - Friday, October 17, 2025 (party RSVP attached)
To: <ling-fac@linguist.umass.edu>, <ling-grad@linguist.umass.edu>, <ling-visitor@linguist.umass.edu>, <ling-
colloq@linguist.umass.edu>
Cc: <linzen@nyu.edu>

Dear all,

This Friday, October 17, we will have the second talk in our Fall colloquium series. Our speaker will be Tal Linzen, who is an
Associate Professor of Linguistics and Data Science at New York University and a Research Scientist at Google.
The talk will take place in ILC S211 at 3:30pm.

[...]

To model human linguistic cognition, make LLMs less superhuman

When people listen to or read a sentence, they actively make predictions about upcoming words: words that are less predictable are
generally read more slowly than predictable ones. The success of large language models (LLMs), which, like humans, make
predictions about upcoming words, has motivated exploring the use of these models as cognitive models of human linguistic
prediction. Surprisingly, in the last few years, as language models have become better at predicting the next word, their ability to
predict human reading behavior has declined. This is because LLMs are able to predict upcoming words much better than people
can, leading them to predict lower processing difficulty in reading than observed in human experiments; in other words, mainstream
LLMs are ‘superhuman’ as models of language comprehension. LLMs’ superhumanness is primarily driven by two factors:
compared to humans, LLMs have much stronger long-term memory for facts and training examples, and they have much better
short-term memory for previous words in the text. In this talk, I'll survey some of the work from my group and others that supports
these hypotheses, and will outline some ongoing and future work possible directions for creating more human-like LLMs.

mailto:cspellerberg@umass.edu
mailto:ling-fac@linguist.umass.edu
mailto:ling-grad@linguist.umass.edu
mailto:ling-visitor@linguist.umass.edu
mailto:ling-colloq@linguist.umass.edu
mailto:ling-colloq@linguist.umass.edu
mailto:linzen@nyu.edu
https://tallinzen.net/

Using labeled data with LLMs

• Today: gradient-based learning for LLMs with
labeled data

• Thursday: human labeling and natural
language understanding tasks

5

• Why LM at all? Why not supervised data only for
training?
• RNNs/LSTMs, BoE: sure (e.g. Stanza: Qi et al. 2020)
• Transformers: no, needs LM pretraining

6

https://aclanthology.org/2020.acl-demos.14/

• Why used labeled data at all? Why not zero-shot
prompts?

7

Figure 1: We assess the potential of LLMs as multi-purpose tools for CSS. We identify core subject areas in prior CSS work
and select 24 diverse and representative tasks from across these fields (top). Then, we segment tasks into distinct discourse types
and evaluate both open-source and industrial LLMs across this benchmark using zero-shot prompting (bottom).

Zhuo et al., 2023; Goyal et al., 2022). If LLMs
can similarly provide reliable labels and summary
codes through zero-shot prompting, CSS research
is broadened a wider range of hypotheses than cur-
rent tools and data resources support. Zero-shot
viability in this space is our primary research ques-
tion. To effectively harness the power of LLMs,
behavioral researchers should understand the pros
and cons of different modeling decisions (model-
selection), as well as how these decisions intersect
with their fields of specialization (domain-utility)
and downstream use-cases (functionality). By eval-
uating LLMs on an extensive suite of CSS tasks,
this work provides researchers with a road map
with answers to the following research questions:

• (RQ1) Viability: Are LLMs able to augment
the human annotation pipeline? Can they re-
place annotation entirely?

• (RQ2) Model-Selection: How do different
aspects of LLMs (e.g., model size, pretrain-
ing) affect their performances on CSS tasks?

• (RQ3) Domain-Utility: Are zero-shot LLMs
specially adapted for better results in some
fields of science rather than others?

• (RQ4) Functionality: Are zero-shot LLMs
equipped to assist with labeling tasks (classifi-
cation) or summary-explanatory tasks (gener-
ation) or both?

The research pipeline in Figure 1 allows us to
answer these questions. First, we survey the so-
cial science literature to understand where LLMs

could serve as analytical tools (§2). Then we opera-
tionalize each use-case with a set of representative
tasks (§3). Specifically, classification and parsing
methods can help researchers code for linguistic,
psychological, and cultural categories (§3.1-3.3)
while generative models can explain underlying
constructs (e.g., figurative language, hate speech,
and misinformation), and restructure text accord-
ing to established theories like cognitive behavioral
therapy (§3.4). With a final evaluation suite of 24
tasks, we test the zero-shot performance of 13 lan-
guage models with differing architectures, sizes,
pre-training, and fine-tuning paradigms (§5, 6).
This allows us to suggest actionable steps for social
scientists interested in co-opting LLMs for research
(§7). Specifically, we suggest a blended supervised-
unsupervised scheme for human-AI partnered la-
beling and content analysis.

Concretely, our analysis reveals that, except in
minority cases, prompted LLMs do not match or
exceed the performance of carefully fine-tuned clas-
sifiers, and the best LLM performances are often
too low to entirely replace human annotation. How-
ever, LLMs can achieve fair levels of agreement
with humans on labeling tasks. These results are
not limited to a subset of academic fields, but rather
span the social sciences across a range of conversa-
tion, utterance, and document-level classification
tasks. Furthermore, the benefits of LLMs are com-
pounded as models scale up. This suggests that
LLMs can augment the annotation process through
iterative joint-labeling, significantly speeding up
and improving text analysis in the social sciences.

[Ziems et al., 2023]

Effective Prompt Guideline Reference Guideline Example

When the answer is categorical, enumerate options as al-
phabetical multiple-choice so that the output is simply the
highest-probability token (‘A’, ‘B’).

Hendrycks et al. (2021) {$CONTEXT}

Which of the following describes the
above news headline?
A: Misinformation
B: Trustworthy
{$CONSTRAINT}

Each option should be separated by a newline () to
resemble the natural format of online multiple choice ques-
tions. More natural prompts will elicit more regular behav-
ior.

Inverse Scaling Prize

To promote instruction-following, give instructions after
the context is provided; then explicitly state any con-
straints. Recent and repeated text has a greater effect on
LLM generations due to common attention patterns.

Child et al. (2019) {$CONTEXT}
{$QUESTION}

Constraint: Even if you are uncertain,
you must pick either “True” or “False”
without using any other words.

Clarify the expected output in the case of uncertainty.
Uncertain models may use default phrases like “I don’t
know,” and clarifying constraints force the model to answer.

No Existing Reference

When the answer should contain multiple pieces of infor-
mation, request responses in JSON format. This
leverages LLM’s familiarity with code to provide an output
structure that is more easily parsed.

MiniChain Library {$CONTEXT}
{$QUESTION}

JSON Output:

Table 1: LLM Prompting Best Practices to generate consistent, machine-readable outputs for CSS tasks. These techniques
can help solve overgeneralization problems on a constrained codebook, and they can force models to answer questions with
inherent uncertainty or offensive language. See full example prompts in the Appendix.

process provides a fair comparison across all mod-
els. Additionally, it is a reasonable estimate of the
performance of a prompt written by a non-AI ex-
pert using LLMs to build a CSS tool. However,
further work is needed to understand the upper-
bound prompted performance for each LLM with
task-specific prompt engineering.

In order to receive consistent, reproducible re-
sults we utilize a temperature of zero for all LLMs.
For models which provide probabilities directly, we
constrain decoding to the valid output classes 2. For
other models, such as ChatGPT, we use logit bias
to encourage valid outputs during decoding3. All
other generation parameters are left at the default
settings for each model.

4.3 Test Set Construction

For each task, we evaluate a class-stratified sample
of at most 500 instances from the dataset’s desig-
nated test set. If the designation is missing, we take
the class-stratified sample from the entire dataset.
Our sampled test sizes and class counts are in Ta-
ble 8. All datasets, prompts, and model outputs are
released for future comparison and analysis.4

2Probability outputs for HuggingFace and GPT-3
3Logit Bias reference for ChatGPT
4Data Directory of our Github Project

4.4 Evaluation Metrics

Automatic Evaluation Apart from the multi-
label classification of Event Detection and the struc-
tured parsing task of Event Argument Extraction,
all classification tasks are evaluated using accuracy.
Since we mapped the label space for each task to
an alphabetical list of candidate options and set
the logit bias to favor these options (§4.2), eval-
uation scripts are straightforward string matching
procedures. For Event Detection, we use F1 scores.

Human Evaluation For high-variation tasks like
dialogue, word-overlap-based machine translation
metrics like BLEU and ROUGE have low corre-
lation with human quality judgments (Liu et al.,
2016). For open-ended generation tasks in particu-
lar, embedding-similarity metrics like BERTScore
are insufficient (Novikova et al., 2017) and human
evaluation is strongly preferable (Santhanam and
Shaikh, 2019). However, even human evaluations
can exhibit high variance and instability due to cul-
tural and individual differences (Peng et al., 1997).
Pilot rounds revealed a high degree of variance and
unpredictability in our evaluation, especially from
crowdworkers (see Appendix A), and thus we opted
to use expert annotations for generation results in
this work. We discuss implications and solutions
to CSS evaluation challenges in Section 7.4.

The authors opt to serve as expert annotators.
Annotators are blinded to the corresponding mod-

https://arxiv.org/abs/2305.03514

• Why used labeled data at all? Why not zero-shot
prompts?

8

• how to select good prompts??
• tricks like this? https://www.promptingguide.ai/

• prompt choice is tightly interleaved with the LLM
• e.g. sensitivity whitespace and punctuation, wordings/

phrasings
• how do you know if the LM classifier is doing what you want?

• need human labels for evaluation!
• but if you have labels, might as well train.

• typically, this improves the model.

http://www.apple.com

• Fine-tuning, general paradigm
• Use LM pretraining to initialize weights
• Use supervised objective to update

• inductive bias: hopefully don't move too far away
• Today: methods for FT

• "Vanilla" fine-tuning
• Classification
• More LM

• Parameter efficient FT
• Soft prompts
• Low-Rank Adaptation

9

Fine-tuning for classification
• From a BERT encoder-only model:

• Add new classification head, typically attached to
"[CLS]" token's last layer

• Gradient update ALL Transformer params (and from
the new classif. head) from classification cross-entropy

10

Fine-tuning for tagging
• From a BERT encoder-only model:

• Add a new tag classification head, attached to each
token's last layer

• Gradient update ALL Transformer params (and from the
new classif. head) from tag classification cross-entropy

11

Fine-tuning for similarity:

SentenceBERT

• There are many released BERT-likes tuned
for specific tasks - sentiment, toxicity, etc.

• SentenceBERT is worth mentioning:
designed to encode sentences to
embedding vectors
• f(sentence) --> vector
• The model is trained to give high

cosine similarity to human-annotated
pairs of similar, paraphrased,
sentences

• Document retrieval, clustering, etc.
• https://sbert.net/

12

Sentence A Sentence B

BERT BERT

u v

pooling pooling

(u, v, |u-v|)

Softmax classifier

Figure 1: SBERT architecture with classification ob-
jective function, e.g., for fine-tuning on SNLI dataset.
The two BERT networks have tied weights (siamese
network structure).

computed candidate embeddings using attention.
This idea works for finding the highest scoring
sentence in a larger collection. However, poly-
encoders have the drawback that the score function
is not symmetric and the computational overhead
is too large for use-cases like clustering, which
would require O(n2) score computations.

Previous neural sentence embedding methods
started the training from a random initialization.
In this publication, we use the pre-trained BERT
and RoBERTa network and only fine-tune it to
yield useful sentence embeddings. This reduces
significantly the needed training time: SBERT can
be tuned in less than 20 minutes, while yielding
better results than comparable sentence embed-
ding methods.

3 Model

SBERT adds a pooling operation to the output
of BERT / RoBERTa to derive a fixed sized sen-
tence embedding. We experiment with three pool-
ing strategies: Using the output of the CLS-token,
computing the mean of all output vectors (MEAN-
strategy), and computing a max-over-time of the
output vectors (MAX-strategy). The default config-
uration is MEAN.

In order to fine-tune BERT / RoBERTa, we cre-
ate siamese and triplet networks (Schroff et al.,
2015) to update the weights such that the produced
sentence embeddings are semantically meaningful
and can be compared with cosine-similarity.

The network structure depends on the available

Sentence A Sentence B

BERT BERT

u v

pooling pooling

cosine-sim(u, v)

-1 … 1

Figure 2: SBERT architecture at inference, for exam-
ple, to compute similarity scores. This architecture is
also used with the regression objective function.

training data. We experiment with the following
structures and objective functions.

Classification Objective Function. We con-
catenate the sentence embeddings u and v with
the element-wise difference |u�v| and multiply it
with the trainable weight Wt 2 R3n⇥k:

o = softmax(Wt(u, v, |u� v|))

where n is the dimension of the sentence em-
beddings and k the number of labels. We optimize
cross-entropy loss. This structure is depicted in
Figure 1.

Regression Objective Function. The cosine-
similarity between the two sentence embeddings
u and v is computed (Figure 2). We use mean-
squared-error loss as the objective function.

Triplet Objective Function. Given an anchor
sentence a, a positive sentence p, and a negative
sentence n, triplet loss tunes the network such that
the distance between a and p is smaller than the
distance between a and n. Mathematically, we
minimize the following loss function:

max(||sa � sp||� ||sa � sn||+ ✏, 0)

with sx the sentence embedding for a/n/p, || · ||
a distance metric and margin ✏. Margin ✏ ensures
that sp is at least ✏ closer to sa than sn. As metric
we use Euclidean distance and we set ✏ = 1 in our
experiments.

3.1 Training Details

We train SBERT on the combination of the SNLI
(Bowman et al., 2015) and the Multi-Genre NLI

[Reimers and Gurevich, 2019]

https://aclanthology.org/D19-1410/

Using BERT
• Fine-tuned BERT is an accurate, widely appliable way to train a text

classifier or tagger with at least a moderate (>100) amount of labeled
data

• Param efficient, compared to FT genLLM
• Typically BERT-likes are ~100M parameters

• Trained on "only" ~3B tokens (Wikipedia + (pirated)
BooksCorpus)

• Compare to >=7B for most generative LLMs
• Many pretrained BERT-like, MLM-trained models are available

• Naming: "BERT" sometimes means the original release, but
sometimes means the general class of models (!)

• RoBERTa, DeBERTa, "ModernBERT", ...
• Many languages

• mBERT and XLM-R: multilingual models
• or specific languages or language families (AfriBERTa,

LatinBERT, ...)
• Many domains (LegalBERT, BERTweet, SciBERT, ...)

13

https://en.wikipedia.org/wiki/BookCorpus

Fine-tuning gen. LLMs
• Mechanism: FT with the next-word prediction head

• continued pretraining
• help LM adapt to new domain or language

• alignment/safety: give examples of desired generative
outputs
• "Supervised FT for instruction-tuning" in this context;

alternatives exist (next week)

• do a specific task
• assume your labeled task is cast as generation

14

15

Parameter-Efficient Finetuning

Adapting to a new domain by continued pretraining (finetuning) is a
problem with huge LLMs.
• Enormous numbers of parameters to train
• Each pass of batch gradient descent has to backpropagate through

many many huge layers.
• Expensive in processing power, in memory, and in time.
Instead, parameter-efficient fine tuning (PEFT)
• Efficiently select a subset of parameters to update when finetuning.
• E.g., freeze some of the parameters (don’t change them),
• And only update some a few parameters.

[slide: SLP3]

Soft prompts
• (Lester et al., EMNLP 2021)

• [for classification,] assume your labeled task is cast as
generation

• a textual prompt selects input embeddings, used for
generation

• use labeled predictive loss to gradient descend the
input embedding, to encourage the LLM to generate
desired outputs
• ...this "soft prompt" can be easily stored shared

16

https://aclanthology.org/2021.emnlp-main.243/

17

LoRA (Low-Rank Adaptation)

• Trransformers have many dense matrix multiply
layers
• Like WQ, WK, WV, WO layers in attention

• Instead of updating these layers during finetuning,
• Freeze these layers
• Update a low-rank approximation with fewer

parameters.

[slide: SLP3]

18

LoRA h

Pretrained
Weights

W
d

k r

k

A

Br

x
d

1

1
k

d

× T

[slide: SLP3]

