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9.1 • ATTENTION 3

In (9.4), the phrase The keys is the subject of the sentence, and in English and many
languages, must agree in grammatical number with the verb are; in this case both are
plural. In English we can’t use a singular verb like is with a plural subject like keys

(we’ll discuss agreement more in Chapter 18). In (9.5), we know that bank refers
to the side of a pond or river and not a financial institution because of the context,
including words like pond. (We’ll discuss word senses more in Chapter 11.)

The point of all these examples is that these contextual words that help us com-
pute the meaning of words in context can be quite far away in the sentence or para-
graph. Transformers can build contextual representations of word meaning, contex-
tual embeddings, by integrating the meaning of these helpful contextual words. In acontextual

embeddings
transformer, layer by layer, we build up richer and richer contextualized representa-
tions of the meanings of input tokens. At each layer, we compute the representation
of a token i by combining information about i from the previous layer with infor-
mation about the neighboring tokens to produce a contextualized representation for
each word at each position.

Attention is the mechanism in the transformer that weighs and combines the
representations from appropriate other tokens in the context from layer k�1 to build
the representation for tokens in layer k.
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Layer k+1
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self-attention distribution

columns corresponding to input tokens

Figure 9.2 The self-attention weight distribution a that is part of the computation of the
representation for the word it at layer k+1. In computing the representation for it, we attend
differently to the various words at layer l, with darker shades indicating higher self-attention
values. Note that the transformer is attending highly to the columns corresponding to the
tokens chicken and road , a sensible result, since at the point where it occurs, it could plausibly
corefers with the chicken or the road, and hence we’d like the representation for it to draw on
the representation for these earlier words. Figure adapted from Uszkoreit (2017).

Fig. 9.2 shows a schematic example simplified from a transformer (Uszkoreit,
2017). The figure describes the situation when the current token is it and we need
to compute a contextual representation for this token at layer k+1 of the transformer,
drawing on the representations (from layer k) of every prior token. The figure uses
color to represent the attention distribution over the contextual words: the tokens
chicken and road both have a high attention weight, meaning that as we are com-
puting the representation for it, we will draw most heavily on the representation for
chicken and road. This will be useful in building the final representation for it,
since it will end up coreferring with either chicken or road.

Let’s now turn to how this attention distribution is represented and computed.
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the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

[SLP3, ch. 8]
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Figure 9.4 Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.

Let’s talk shapes. The input to attention xi and the output from attention ai both
have the same dimensionality 1⇥ d (We often call d the model dimensionality,
and indeed as we’ll discuss in Section 9.2 the output hi of each transformer block,
as well as the intermediate vectors inside the transformer block also have the same
dimensionality 1⇥d.).

We’ll have a dimension dk for the key and query vectors. The query vector and
the key vector are both dimensionality 1⇥dk, so we can take their dot product qi ·k j.
We’ll have a separate dimension dv for the value vectors. The transform matrix WQ

has shape [d ⇥ dk], WK is [d ⇥ dk], and WV is [d ⇥ dv]. In the original transformer
work (Vaswani et al., 2017), d was 512, dk and dv were both 64.

Multi-head Attention Equations 9.11-9.13 describe a single attention head. But
actually, transformers use multiple attention heads. The intuition is that each head
might be attending to the context for different purposes: heads might be special-
ized to represent different linguistic relationships between context elements and the
current token, or to look for particular kinds of patterns in the context.

So in multi-head attention we have h separate attention heads that reside inmulti-head
attention

parallel layers at the same depth in a model, each with its own set of parameters that
allows the head to model different aspects of the relationships among inputs. Thus
each head i in a self-attention layer has its own set of key, query and value matrices:
WKi, WQi and WVi. These are used to project the inputs into separate key, value,
and query embeddings for each head.

When using multiple heads the model dimension d is still used for the input
and output, the key and query embeddings have dimensionality dk, and the value
embeddings are of dimensionality dv (again, in the original transformer paper dk =
dv = 64, h = 8, and d = 512). Thus for each head i, we have weight layers WQi of
shape [d ⇥dk], WKi of shape [d ⇥dk], and WVi of shape [d ⇥dv].

Below are the equations for attention augmented with multiple heads; Fig. 9.5

[SLP3, ch. 8]
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Full Transformer block

• Multiple layers with MLPs (FF layers) 
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Figure 8.5 The multi-head attention computation for input xi, producing output ai. A multi-head attention
layer has A heads, each with its own query, key, and value weight matrices. The outputs from each of the heads
are concatenated and then projected down to d, thus producing an output of the same size as the input.
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……
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Figure 8.6 The architecture of a transformer block showing the residual stream. This
figure shows the prenorm version of the architecture, in which the layer norms happen before
the attention and feedforward layers rather than after.

tention layer that we have seen, and the feedforward layer that we will introduce.
Before the attention and feedforward layer is a computation called the layer norm.

Thus the initial vector is passed through a layer norm and attention layer, and
the result is added back into the stream, in this case to the original input vector
xi. And then this summed vector is again passed through another layer norm and a
feedforward layer, and the output of those is added back into the residual, and we’ll
use hi to refer to the resulting output of the transformer block for token i. (In earlier
descriptions the residual stream was often described using a different metaphor as
residual connections that add the input of a component to its output, but the residual
stream is a more perspicuous way of visualizing the transformer.)

10 CHAPTER 8 • TRANSFORMERS

each computation inside the block:

t1i = LayerNorm(xi) (8.26)

t2i = MultiHeadAttention(t1i ,
⇥
t11, · · · ,t1N

⇤
) (8.27)

t3i = t2i +xi (8.28)

t4i = LayerNorm(t3i ) (8.29)

t5i = FFN(t4i ) (8.30)

hi = t5i + t3i (8.31)

Notice that the only component that takes as input information from other tokens
(other residual streams) is multi-head attention, which (as we see from Eq. 8.27)
looks at all the neighboring tokens in the context. The output from attention, how-
ever, is then added into this token’s embedding stream. In fact, Elhage et al. (2021)
show that we can view attention heads as literally moving information from the
residual stream of a neighboring token into the current stream. The high-dimensional
embedding space at each position thus contains information about the current to-
ken and about neighboring tokens, albeit in different subspaces of the vector space.
Fig. 8.7 shows a visualization of this movement.

Token A
residual
 stream

Token B
residual 
stream

Figure 8.7 An attention head can move information from token A’s residual stream into
token B’s residual stream.

Crucially, the input and output dimensions of transformer blocks are matched so
they can be stacked. Each token vector xi at the input to the block has dimensionality
d, and the output hi also has dimensionality d. Transformers for large language
models stack many of these blocks, from 12 layers (used for the T5 or GPT-3-small
language models) to 96 layers (used for GPT-3 large), to even more for more recent
models. We’ll come back to this issue of stacking in a bit.

Equation 8.26 and following are just the equation for a single transformer block,
but the residual stream metaphor goes through all the transformer layers, from the
first transformer blocks to the 12th, in a 12-layer transformer. At the earlier trans-
former blocks, the residual stream is representing the current token. At the highest
transformer blocks, the residual stream is usually representing the following token,
since at the very end it’s being trained to predict the next token.

Once we stack many blocks, there is one more requirement: at the very end of
the last (highest) transformer block, there is a single extra layer norm that is run on
the last hi of each token stream (just below the language model head layer that we
will define soon). 3

3 Note that we are using the most common current transformer architecture, which is called the prenorm
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We’ve already seen the attention layer, so let’s now introduce the feedforward
and layer norm computations in the context of processing a single input xi at token
position i.

Feedforward layer The feedforward layer is a fully-connected 2-layer network,
i.e., one hidden layer, two weight matrices, as introduced in Chapter 6. The weights
are the same for each token position i, but are different from layer to layer. It is com-
mon to make the dimensionality dff of the hidden layer of the feedforward network
be larger than the model dimensionality d. (For example in the original transformer
model, d = 512 and dff = 2048.)

FFN(xi) = ReLU(xiW1 +b1)W2 +b2 (8.21)

Layer Norm At two stages in the transformer block we normalize the vector (Ba
et al., 2016). This process, called layer norm (short for layer normalization), is onelayer norm

of many forms of normalization that can be used to improve training performance
in deep neural networks by keeping the values of a hidden layer in a range that
facilitates gradient-based training.

Layer norm is a variation of the z-score from statistics, applied to a single vec-
tor in a hidden layer. That is, the term layer norm is a bit confusing; layer norm
is not applied to an entire transformer layer, but just to the embedding vector of a
single token. Thus the input to layer norm is a single vector of dimensionality d
and the output is that vector normalized, again of dimensionality d. The first step in
layer normalization is to calculate the mean, µ , and standard deviation, s , over the
elements of the vector to be normalized. Given an embedding vector x of dimen-
sionality d, these values are calculated as follows.

µ =
1
d

dX

i=1

xi (8.22)

s =

vuut1
d

dX

i=1

(xi � µ)2 (8.23)

Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. The result of this computation is
a new vector with zero mean and a standard deviation of one.

x̂ =
(x� µ)

s
(8.24)

Finally, in the standard implementation of layer normalization, two learnable param-
eters, g and b , representing gain and offset values, are introduced.

LayerNorm(x) = g (x� µ)

s
+b (8.25)

Putting it all together The function computed by a transformer block can be ex-
pressed by breaking it down with one equation for each component computation,
using t (of shape [1 ⇥ d]) to stand for transformer and superscripts to demarcate
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Figure 8.5 The multi-head attention computation for input xi, producing output ai. A multi-head attention
layer has A heads, each with its own query, key, and value weight matrices. The outputs from each of the heads
are concatenated and then projected down to d, thus producing an output of the same size as the input.
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Figure 8.6 The architecture of a transformer block showing the residual stream. This
figure shows the prenorm version of the architecture, in which the layer norms happen before
the attention and feedforward layers rather than after.

tention layer that we have seen, and the feedforward layer that we will introduce.
Before the attention and feedforward layer is a computation called the layer norm.

Thus the initial vector is passed through a layer norm and attention layer, and
the result is added back into the stream, in this case to the original input vector
xi. And then this summed vector is again passed through another layer norm and a
feedforward layer, and the output of those is added back into the residual, and we’ll
use hi to refer to the resulting output of the transformer block for token i. (In earlier
descriptions the residual stream was often described using a different metaphor as
residual connections that add the input of a component to its output, but the residual
stream is a more perspicuous way of visualizing the transformer.)
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each head i in a self-attention layer has its own set of query, key, and value matrices:
WQi, WKi, and WVi. These are used to project the inputs into separate query, key,
and value embeddings for each head.

When using multiple heads the model dimension d is still used for the input
and output, the query and key embeddings have dimensionality dk, and the value
embeddings are of dimensionality dv (again, in the original transformer paper dk =
dv = 64, A = 8, and d = 512). Thus for each head i, we have weight layers WQi of
shape [d ⇥dk], WKi of shape [d ⇥dk], and WVi of shape [d ⇥dv].

Below are the equations for attention augmented with multiple heads; Fig. 8.5
shows an intuition.

qc
i = xiW

Qc; kc
j = x jW

Kc; vc
j = x jW

Vc; 8 c 1  c  A (8.15)

scorec(xi,x j) =
qc

i ·kc
jp

dk
(8.16)

ac
i j = softmax(scorec(xi,x j)) 8 j  i (8.17)

headc
i =

X

ji

ac
i jv

c
j (8.18)

ai = (head1 �head2...�headA)WO (8.19)

MultiHeadAttention(xi, [x1, · · · ,xi�1]) = ai (8.20)

Note in Eq. 8.20 that MultiHeadAttention is a function of the current input xi, as
well as all the other inputs. For the causal or left-to-right attention that we use in
this chapter, the other inputs are only to the left, but we’ll also see a version of
attention in Chapter 10 where attention is a function of the tokens to the right as
well. We’ll return to this idea about causal inputs in Eq. 8.34 when we introduce the
idea of masking the right context.

The output of each of the A heads is of shape [1 ⇥ dv], and so the output of the
multi-head layer with A heads consists of A vectors of shape [1 ⇥ dv]. These are
concatenated to produce a single output with dimensionality [1⇥Adv]. Then we use
yet another linear projection WO 2 RAdv⇥d to reshape it, resulting in the multi-head
attention vector ai with the correct output shape [1⇥d] at each input i.

8.2 Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes three other kinds of layers: (1)
a feedforward layer, (2) residual connections, and (3) normalizing layers (colloqui-
ally called “layer norm”).

Fig. 8.6 illustrates a transformer block, sketching a common way of thinking
about the block that is called the residual stream (Elhage et al., 2021). In the resid-residual stream
ual stream viewpoint, we consider the processing of an individual token i through
the transformer block as a single stream of d-dimensional representations for token
position i. This residual stream starts with the original input vector, and the various
components read their input from the residual stream and add their output back into
the stream.

The input at the bottom of the stream is an embedding for a token, which has
dimensionality d. This initial embedding gets passed up (by residual connections),
and is progressively added to by the other components of the transformer: the at-

[SLP3, ch. 8]
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

[Vaswani et al. 2017. 
slide: Emma Strubell]
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attention layers running in parallel.
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p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward
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• Parallelized training (switch slides)
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Transformer
s

Parallelizing Attention 
Computation
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Parallelizing computation using X
For attention/transformer block we've been computing a 
single output at a single time step i in a single residual 
stream.  
But we can pack the  N tokens of the input sequence into 
a single matrix X of size [N × d].  
Each row of X is the embedding of one token of the input.  
X can have 1K-32K rows, each of the dimensionality of 
the embedding d (the model dimension)

[slide: SLP3]



QKT

Now can do a single matrix multiply to combine Q and 
KT

[slide: SLP3]



Parallelizing attention

• Scale the  scores, take the softmax, 
and then multiply the result by V 
resulting in a matrix of shape N × d 
• An attention vector for each input 

token

[slide: SLP3]



Masking out the future

• What is this mask function? 
QKT has a score for each query dot every 
key, including those that follow the query. 
• Guessing the next word is pretty simple if 

you already know it! 

[slide: SLP3]



Masking out the future

 Add –∞ to cells in upper 
triangle 
The softmax will turn it to 0

[slide: SLP3]



Another point: Attention is quadratic in length
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Attention again
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Parallelizing Multi-head Attention
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Parallelizing Multi-head Attention

or
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Transformer
s

Parallelizing Attention 
Computation
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Transformer
s

Input and output: 
Position embeddings 
and the Language 
Model Head

[slide: SLP3]



Token and Position Embeddings

The matrix X (of shape [N × d]) has an 
embedding for each word in the context.  
This embedding is created by adding two 
distinct embedding for each input 
• token embedding 
• positional embedding

[slide: SLP3]



Token Embeddings
Embedding matrix E has shape [|V | ×  d ].  
• One row for each of the |V | tokens in the vocabulary.  
• Each word is a row vector of d dimensions 

Given:  string "Thanks for all the" 
1. Tokenize with BPE and convert into vocab indices 
w = [5,4000,10532,2224]  
2. Select the corresponding rows from E, each row an embedding 

• 	  (row 5, row 4000, row 10532, row 2224). 

[slide: SLP3]



Position Embeddings
There are many methods, but we'll just describe the simplest: 
absolute position. 
Goal: learn a position embedding matrix Epos of shape [1 × N ].  
Start with randomly initialized embeddings 
• one for each integer up to some maximum length.  
• i.e., just as we have an embedding for token fish, we’ll have an 

embedding for position 3 and position 17. 
• As with word embeddings, these position embeddings are 

learned along with other parameters during training. 

[slide: SLP3]



Each x is just the sum of word and position embeddings
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Language modeling head

Layer L
Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits 

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

   Unembedding
    layer = ET

y1 y2 y|V|…

u1 u2 u|V|…
Language Model Head

takes hL
N and outputs a

distribution over vocabulary V
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Language modeling head

Layer L
Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits 

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

   Unembedding
    layer = ET

y1 y2 y|V|…

u1 u2 u|V|…
Language Model Head

takes hL
N and outputs a

distribution over vocabulary V

Unembedding layer:  linear layer projects from hLN   (shape [1 
× d])  to logit vector 

Why "unembedding"? 
Tied to ET

Weight tying, we use the same 
weights for two different 
matrices

Unembedding layer maps from an 
embedding to a 1x|V| vector of logits
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Language modeling head

Layer L
Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits 

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

   Unembedding
    layer = ET

y1 y2 y|V|…

u1 u2 u|V|…
Language Model Head

takes hL
N and outputs a

distribution over vocabulary V

Logits, the score vector u 

One score for each of the |V | 
possible words in the vocabulary 
V. Shape 1 × |V |. 

Softmax turns the logits into 
probabilities over vocabulary. 
Shape 1 × |V |. 
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• Training instability is a notorious issue 
• Esp. with many layers, >10 or >20 

• Yet something is going right. Not clear why!



Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead 

using subword tokenization

Sennrich et al., ACL 2016
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