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Gradient-based learning

• Goal: learn all model parameters W 
• Loss function L(W) based on dataset 
• Choose W to minimize L(W) be following the 

negative gradient of the loss 
• Intuition: cross-entropy gradient shifts 

probability mass to the data
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• blackboard
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Backpropagation

• Implemented for you in PyTorch 
• Just define the forward computation graph, 

then it performs the backward pass for you! 
• a = ... 
• b = ... 
• loss = .... 
• loss.backward() 
• a.grad  # => the gradient vector!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state
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the students opened their
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A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week
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why is this good?



Capturing Long Range Dependencies

If an RNN Language Model is to outperform an n-gram model it
must discover and represent long range dependencies:

p(sandcastle | Alice went to the beach. There she built a)

While a simple RNN LM can represent such dependencies in
theory, can it learn them?
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RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost4 to
changes in h1:

hn = g(V [xn; hn�1] + c)

p̂n = softmax(Whn + b) w4
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The core of the recurrent product is the repeated multiplication of
Vh. If the largest eigenvalue of Vh is:

• 1, then gradient will propagate,

• > 1, the product will grow exponentially (explode),

• < 1, the product shrinks exponentially (vanishes).
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How to learn RNNs

• Learning heuristics 
• Gradient clipping and normalization 

• Architectures that mitigate vanishing 
gradients 

• [Later lectures: just let your model just look 
back further, via attention mechanisms]
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LSTM (Long short-term memory)
• Goals:

• 1. Be able to “remember” for longer distances

• 2. Stable backpropagation during training

• Augment individual timesteps with a number of specialized vectors and gating 
functions.  (There are alternative gated RNNs, but at this point LSTM has won.)

• Complicated!  But maybe the most widely used RNN model.

• [Newer work: state space models]
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Long Short Term Memory (LSTM)

Christopher Olah: Understanding LSTM Networks
colah.github.io/posts/2015-08-Understanding-LSTMs/

• Main state

• c:  Memory cell

• h:  Hidden state

• Update system

• g:  proposed new cell

• f, i, o:  Forget, Input, Output gates 
control acceptance of g into new cell & state
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Mathematically, the LSTM architecture is defined as:72

sj = Rlstm(sj�1,xj) =[cj;hj]
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sj 2 R2·dh , xi 2 Rdx , cj,hj, i, f ,o,g 2 Rdh , Wx� 2 Rdx⇥dh , Wh� 2 Rdh⇥dh ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, cj and hj, where cj is the memory component and hj is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input xj and the
previous state hj�1, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of xj and hj�1, passed through a tanh activation func-
tion. The memory cj is then updated: the forget gate controls how much of the previous
memory to keep (cj�1 � f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of hj (which is also the output yj) is determined based
on the content of the memory cj, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part cj to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).
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Koutńık, Steunebrink, and Schmidhuber (2015).

400

gates ∈ [0,1]D

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

sj = Rlstm(sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(xjW
xi + hj�1W

hi)

f =�(xjW
xf + hj�1W

hf )

o =�(xjW
xo + hj�1W

ho)

g =tanh(xjW
xg + hj�1W

hg)

yj = Olstm(sj) =hj

(39)

sj 2 R2·dh , xi 2 Rdx , cj,hj, i, f ,o,g 2 Rdh , Wx� 2 Rdx⇥dh , Wh� 2 Rdh⇥dh ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, cj and hj, where cj is the memory component and hj is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input xj and the
previous state hj�1, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of xj and hj�1, passed through a tanh activation func-
tion. The memory cj is then updated: the forget gate controls how much of the previous
memory to keep (cj�1 � f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of hj (which is also the output yj) is determined based
on the content of the memory cj, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part cj to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed cell

main information
gating function

Goldberg

Mathematically, the LSTM architecture is defined as:72

sj = Rlstm(sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(xjW
xi + hj�1W

hi)

f =�(xjW
xf + hj�1W

hf )

o =�(xjW
xo + hj�1W

ho)

g =tanh(xjW
xg + hj�1W

hg)

yj = Olstm(sj) =hj

(39)

sj 2 R2·dh , xi 2 Rdx , cj,hj, i, f ,o,g 2 Rdh , Wx� 2 Rdx⇥dh , Wh� 2 Rdh⇥dh ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, cj and hj, where cj is the memory component and hj is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input xj and the
previous state hj�1, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of xj and hj�1, passed through a tanh activation func-
tion. The memory cj is then updated: the forget gate controls how much of the previous
memory to keep (cj�1 � f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of hj (which is also the output yj) is determined based
on the content of the memory cj, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part cj to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
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Coupled forget/input,
no peepholes

http://jair.org/papers/paper4992.html


First Citizen:
Nay, then, that was hers,
It speaks against your other service:
But since the
youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.

SEBASTIAN:
Do I stand till the break off.

BIRON:
Hide thy head.

VENTIDIUS:
He purposeth to Athens: whither, with the vow
I made to handle you.

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Character LMs comparison

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Structure awareness

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


• Recurrent NNs, esp. LSTMs, can impressively 
capture many things

• Flexible: can be used either for fully 
unsupervised LMs, or as fully supervised 
classification or tagging

• ... But they struggle with longer distance and 
structural effects
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