Text Classification

CS 685, Fall 2025

Advanced Natural Language Processing https://people.cs.umass.edu/~brenocon/cs685 f25/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst Text classification

- Supervised learning for text classif.
 - BOW features
 - Word embeddings features

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label y (from a finite label set)
- goal: learn a mapping function f from x to y

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

problem	X	y
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}
topic identification	documents	{sports, news, health,}
author identification	books	(Tolkien, Shakespeare,)
spam identification	emails	{spam, not spam}

... many more!

input x:

```
From European Union <info@eu.org>☆
Subject
Reply to
```

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

```
YOU EMAIL ID HAS WON $10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL:

CONTACT US NOW VIA EMAIL:

NOW TO CLAIM YOUR COMPENSATION
```

label y: spam or not spam

we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$

Demo: Keyword count classifier

- Let's consider this task: sentiment classification of movie reviews
- Can manually defined keyword lists be a useful indicator of text sentiment?
 - For each category, define set of words
 - Predict a category if many of its words are used
- Let's try manually defined keywords!

https://docs.google.com/forms/d/e/
IFAIpQLScpufac69IBvXOeZUoUsNB63EIXKN6BcwPZwoq6kkTBcFnNIg/
viewform?usp=sharing&ouid=104321982622251425263

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor i i the the love movie hate

- What's weird about BOW: for many classification tasks it can actually perform well!
 - genre
 - author (e.g. indicator of style)
 - even.. sentiment?!

Multiclass Logistic Regression

- Each class has its own weight vector across features
 - BOW word-count features
 - Specialized or custom phrase features

Rank (r) Word the 2 and 3 to a 5 she 6 it 7 of 8 said 10 alice 20 all 30 little 40 about 50 again 60 queen 70 don't 80 quite 90 just 100 voice 200 hand 300 turning 400 hall 500 kind

General problem: most words are rare

Zipf's Law

 When word types are ranked by frequency, then frequency (f) * rank (r) is roughly equal to some constant (k)

$$f \times r = k$$

TATord	
Word	Frequency (f)
the	1629
and	844
to	721
a	627
she	537
it	526
of	508
said	462
i	400
alice	385
all	179
little	128
about	94
again	82
queen	68
don't	60
quite	55
just	51
voice	47
hand	20
turning	12
hall	9
kind	7
	the and to a she it of said i alice all little about again queen don't quite just voice hand turning hall

$$f * \mathbf{r} = \mathbf{k}$$
$$\log f + \log r = \log k$$

Sup. learning with document embedding

- Instead of bag-of-words, can we derive a latent embedding of a document/sentence?
 - "Bag of embeddings" or "averaged word embeddings" representation
 - You can use it just like a BOW logistic regression
 - it's just a different type of feature vector
 - Pros/cons?
- Especially for shorter texts, BoE LR typically outperforms BOW LR.

See: Arora et al. 2017

• stopped here 9/11/25

Overfitting and generalization

- Overfitting: your model performs overly optimistically on training set, but generalizes poorly to other data (even from same distribution)
- To diagnose: separate training set vs. test set.
- How did we regularize Naive Bayes and language modeling?

• For logistic regression: L2 regularization for training

Regularization tradeoffs

• No regularization <-----> Very strong regularization

Visualizing a classifier in feature space

"Bias term"

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta =$$

50% prob where

$$\beta^{\mathsf{T}} x = 0$$

Predict y=1 when

$$\beta^{\mathsf{T}}x > 0$$

Predict y=0 when

$$\beta^{\mathsf{T}} x \leq 0$$

Application: doc sim to words

- Given a word list to represent a concept, can we score a document for how much it expresses that concept?
- DDR is a very simple embedding approach:
 - Average the word lists embeddings to create a concept vector
 - Average a doc's words to create a document vector
 - Apply cosine similarity!
- Supplying a set of keywords is low-supervision, or lowexpertise, approach compared to labeling docs
 - Though you don't get a nice logreg probability (until you label some...)

LIWC "posemo" list

accept, accepta*, accepted, accepting, accepts, active*, admir*, ador*, advantag*, adventur*, affection*, agree, agreeab*, agreed, agreeing, agreement*, agrees, alright*, amaz*, amor*, amus*, aok, appreciat*, assur*, attachment*, attract*, award*, awesome, beaut*, beloved, benefic*, benefit, benefit*, benefitt*, benevolen*, benign*, best, better, bless*, bold*, bonus*, brave*, bright*, brillian*, calm*, care, cared, carefree, careful*, cares, caring, casually, certain*, challeng*, champ*, charit*, charm*, cheer*, cherish*, chuckl*, clever*, comed*, comfort*, commitment*, compassion*, compliment*, confidence, confidently, considerate, contented*, contentment, convinc*, cool, courag*, create*, creati*, credit*, cute*, cutie*, daring, darlin*, dear*, definite, definitely, delectabl*, delicate*, delicious*, deligh*, determina*, determinad, devot*, digni*, divin*, dynam*, eager*, ease*, easie*, easily, easiness, easing, easy*, ecsta*, efficien*, elegan*, encourag*, energ*, engag*, enjoy*, entertain*, enthus*, excel*, excit*, fab, fabulous*, faith*, fantastic*, favor*, favour*, fearless*, festiv*, fiesta*, fine, flatter*, flawless*, flexib*, flirt*, fond, fondly, fondness, forgave, forgiv*, free, freeb*, freed*, freeing, freely, freeness, freer, frees*, friend*, fun, funn*, genero*, gentle, gentler, gentlest, gently, giggl*, giver*, giving, glad, gladly, glamor*, glamour*, glori*, glory, good, goodness, gorgeous*, grace, graced, graceful*, graces, graci*, grand, grande*, gratef*, grati*, great, grin, grinn*, grins, ha, haha*, handsom*, happi*, happy, harmless*, harmon*, heartfelt, heartwarm*, heaven*, heh*, helper*, helpful*, helping, helps, hero*, hilarious, hoho*, honor*, honor*, honour*, hope, hoped, hopeful, hopefully, hopefulness, hopes, hoping, hug, hugg*, hugs, humor*, humour*, hurra*, ideal*, importan*, impress*, improve*, improving, incentive*, innocen*, inspir*, intell*, interest*, invigor*, joke*, joking, joll*, joy*, keen*, kidding, kind, kindly, kindn*, kiss*, laidback, laugh*, libert*, like, liked, likes, liking, livel*, lmao, lol, love, loved, lovely, lover*, loves, loving*, loval*, luck, lucked, lucki*, lucks, lucky, madly, magnific*, merit*, merr*, neat*, nice*, nurtur*, ok, okay, okay, okay, okay, okay, openminded*, openness, opport*, optimal*, optimi*, original, outgoing, painl*, palatabl*, paradise, partie*, party*, passion*, peace*, perfect*, play, played, playful*, playing, plays, pleasant*, please*, pleasing, pleasur*, popular*, positiv*, prais*, precious*, prettie*, pretty, pride, privileg*, prize*, profit*, promis*, proud*, radian*, readiness, ready, reassur*, relax*, relief, reliev*, resolv*, respect, revigor*, reward*, rich*, rofl, romanc*, romantic*, safe*, satisf*, save, scrumptious*, secur*, sentimental*, share, shared, shares, sharing, silli*, silly, sincer*, smart*, smil*, sociab*, soulmate*, special, splend*, strength*, strong*, succeed*, success*, sunnier, sunniest, sunny, sunshin*, super, superior*, supported, supporter*, supporting, supportive*, supports, suprem*, sure*, surpris*, sweet, sweetheart*, sweetie*, sweetly, sweetness*, sweets, talent*, tehe, tender*, terrific*, thank, thanked, thankf*, thanks, thoughtful*, thrill*, toleran*, tranquil*, treasur*, treat, triumph*, true, trueness, truer, truest, truly, trust*, truth*, useful*, valued, v vigour*, virtue*, virtue*, virtue*, virtue*, virtue*, virtue*, warm*, wealth*, welcom*, well, win, winn*, wins, wisdom, wise*, won, wonderf*, worship*, worthwhile, wow*, yay, yays

Fig. 4 Nearest neighbors of the LIWC positive emotions dictionary