Text Classification CS 685, Fall 2025 Advanced Natural Language Processing https://people.cs.umass.edu/~brenocon/cs685 f25/ #### Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst Text classification - Supervised learning for text classif. - BOW features - Word embeddings features #### text classification - input: some text **x** (e.g., sentence, document) - output: a label y (from a finite label set) - goal: learn a mapping function f from x to y fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**! | problem | X | y | |-----------------------|--------------------------------|-------------------------| | sentiment analysis | text from reviews (e.g., IMDB) | {positive, negative} | | topic identification | documents | {sports, news, health,} | | author identification | books | (Tolkien, Shakespeare,) | | spam identification | emails | {spam, not spam} | ... many more! #### input x: ``` From European Union <info@eu.org>☆ Subject Reply to ``` Please confirm to us that you are the owner of this very email address with your copy of identity card as proof. ``` YOU EMAIL ID HAS WON $10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL: CONTACT US NOW VIA EMAIL: NOW TO CLAIM YOUR COMPENSATION ``` #### label y: spam or not spam we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$ ### Demo: Keyword count classifier - Let's consider this task: sentiment classification of movie reviews - Can manually defined keyword lists be a useful indicator of text sentiment? - For each category, define set of words - Predict a category if many of its words are used - Let's try manually defined keywords! https://docs.google.com/forms/d/e/ IFAIpQLScpufac69IBvXOeZUoUsNB63EIXKN6BcwPZwoq6kkTBcFnNIg/ viewform?usp=sharing&ouid=104321982622251425263 ### bag-of-words representation #### i hate the actor i love the movie | word | count | |-------|-------| | i | 2 | | hate | 1 | | love | 1 | | the | 2 | | movie | 1 | | actor | 1 | ### bag-of-words representation #### i hate the actor i love the movie | word | count | |-------|-------| | i | 2 | | hate | 1 | | love | 1 | | the | 2 | | movie | 1 | | actor | 1 | equivalent representation to: actor i i the the love movie hate - What's weird about BOW: for many classification tasks it can actually perform well! - genre - author (e.g. indicator of style) - even.. sentiment?! ### Multiclass Logistic Regression - Each class has its own weight vector across features - BOW word-count features - Specialized or custom phrase features #### Rank (r) Word the 2 and 3 to a 5 she 6 it 7 of 8 said 10 alice 20 all 30 little 40 about 50 again 60 queen 70 don't 80 quite 90 just 100 voice 200 hand 300 turning 400 hall 500 kind ## General problem: most words are rare #### Zipf's Law When word types are ranked by frequency, then frequency (f) * rank (r) is roughly equal to some constant (k) $$f \times r = k$$ | TATord | | |---------|---| | Word | Frequency (f) | | the | 1629 | | and | 844 | | to | 721 | | a | 627 | | she | 537 | | it | 526 | | of | 508 | | said | 462 | | i | 400 | | alice | 385 | | all | 179 | | little | 128 | | about | 94 | | again | 82 | | queen | 68 | | don't | 60 | | quite | 55 | | just | 51 | | voice | 47 | | hand | 20 | | turning | 12 | | hall | 9 | | kind | 7 | | | the and to a she it of said i alice all little about again queen don't quite just voice hand turning hall | $$f * \mathbf{r} = \mathbf{k}$$ $$\log f + \log r = \log k$$ # Sup. learning with document embedding - Instead of bag-of-words, can we derive a latent embedding of a document/sentence? - "Bag of embeddings" or "averaged word embeddings" representation - You can use it just like a BOW logistic regression - it's just a different type of feature vector - Pros/cons? - Especially for shorter texts, BoE LR typically outperforms BOW LR. See: Arora et al. 2017 • stopped here 9/11/25 ### Overfitting and generalization - Overfitting: your model performs overly optimistically on training set, but generalizes poorly to other data (even from same distribution) - To diagnose: separate training set vs. test set. - How did we regularize Naive Bayes and language modeling? • For logistic regression: L2 regularization for training ### Regularization tradeoffs • No regularization <-----> Very strong regularization #### Visualizing a classifier in feature space "Bias term" Feature vector $$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$ Weights/parameters $$\beta =$$ 50% prob where $$\beta^{\mathsf{T}} x = 0$$ Predict y=1 when $$\beta^{\mathsf{T}}x > 0$$ Predict y=0 when $$\beta^{\mathsf{T}} x \leq 0$$ ### Application: doc sim to words - Given a word list to represent a concept, can we score a document for how much it expresses that concept? - DDR is a very simple embedding approach: - Average the word lists embeddings to create a concept vector - Average a doc's words to create a document vector - Apply cosine similarity! - Supplying a set of keywords is low-supervision, or lowexpertise, approach compared to labeling docs - Though you don't get a nice logreg probability (until you label some...) ### LIWC "posemo" list accept, accepta*, accepted, accepting, accepts, active*, admir*, ador*, advantag*, adventur*, affection*, agree, agreeab*, agreed, agreeing, agreement*, agrees, alright*, amaz*, amor*, amus*, aok, appreciat*, assur*, attachment*, attract*, award*, awesome, beaut*, beloved, benefic*, benefit, benefit*, benefitt*, benevolen*, benign*, best, better, bless*, bold*, bonus*, brave*, bright*, brillian*, calm*, care, cared, carefree, careful*, cares, caring, casually, certain*, challeng*, champ*, charit*, charm*, cheer*, cherish*, chuckl*, clever*, comed*, comfort*, commitment*, compassion*, compliment*, confidence, confidently, considerate, contented*, contentment, convinc*, cool, courag*, create*, creati*, credit*, cute*, cutie*, daring, darlin*, dear*, definite, definitely, delectabl*, delicate*, delicious*, deligh*, determina*, determinad, devot*, digni*, divin*, dynam*, eager*, ease*, easie*, easily, easiness, easing, easy*, ecsta*, efficien*, elegan*, encourag*, energ*, engag*, enjoy*, entertain*, enthus*, excel*, excit*, fab, fabulous*, faith*, fantastic*, favor*, favour*, fearless*, festiv*, fiesta*, fine, flatter*, flawless*, flexib*, flirt*, fond, fondly, fondness, forgave, forgiv*, free, freeb*, freed*, freeing, freely, freeness, freer, frees*, friend*, fun, funn*, genero*, gentle, gentler, gentlest, gently, giggl*, giver*, giving, glad, gladly, glamor*, glamour*, glori*, glory, good, goodness, gorgeous*, grace, graced, graceful*, graces, graci*, grand, grande*, gratef*, grati*, great, grin, grinn*, grins, ha, haha*, handsom*, happi*, happy, harmless*, harmon*, heartfelt, heartwarm*, heaven*, heh*, helper*, helpful*, helping, helps, hero*, hilarious, hoho*, honor*, honor*, honour*, hope, hoped, hopeful, hopefully, hopefulness, hopes, hoping, hug, hugg*, hugs, humor*, humour*, hurra*, ideal*, importan*, impress*, improve*, improving, incentive*, innocen*, inspir*, intell*, interest*, invigor*, joke*, joking, joll*, joy*, keen*, kidding, kind, kindly, kindn*, kiss*, laidback, laugh*, libert*, like, liked, likes, liking, livel*, lmao, lol, love, loved, lovely, lover*, loves, loving*, loval*, luck, lucked, lucki*, lucks, lucky, madly, magnific*, merit*, merr*, neat*, nice*, nurtur*, ok, okay, okay, okay, okay, okay, openminded*, openness, opport*, optimal*, optimi*, original, outgoing, painl*, palatabl*, paradise, partie*, party*, passion*, peace*, perfect*, play, played, playful*, playing, plays, pleasant*, please*, pleasing, pleasur*, popular*, positiv*, prais*, precious*, prettie*, pretty, pride, privileg*, prize*, profit*, promis*, proud*, radian*, readiness, ready, reassur*, relax*, relief, reliev*, resolv*, respect, revigor*, reward*, rich*, rofl, romanc*, romantic*, safe*, satisf*, save, scrumptious*, secur*, sentimental*, share, shared, shares, sharing, silli*, silly, sincer*, smart*, smil*, sociab*, soulmate*, special, splend*, strength*, strong*, succeed*, success*, sunnier, sunniest, sunny, sunshin*, super, superior*, supported, supporter*, supporting, supportive*, supports, suprem*, sure*, surpris*, sweet, sweetheart*, sweetie*, sweetly, sweetness*, sweets, talent*, tehe, tender*, terrific*, thank, thanked, thankf*, thanks, thoughtful*, thrill*, toleran*, tranquil*, treasur*, treat, triumph*, true, trueness, truer, truest, truly, trust*, truth*, useful*, valued, v vigour*, virtue*, virtue*, virtue*, virtue*, virtue*, virtue*, warm*, wealth*, welcom*, well, win, winn*, wins, wisdom, wise*, won, wonderf*, worship*, worthwhile, wow*, yay, yays Fig. 4 Nearest neighbors of the LIWC positive emotions dictionary