Word Embeddings (more) CS 685, Fall 2025 Advanced Natural Language Processing https://people.cs.umass.edu/~brenocon/cs685 f25/ #### Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst ## In SGNS (word2vec), why are word and context vectors separate? Co-occurrence jumps, fox: $$P(+ | w,c) = \sigma(w_{jumps}' c_{fox})$$ #### Suppose you see these sentences: - Ong choi is delicious sautéed with garlic. - Ong choi is superb over rice - Ong choi leaves with salty sauces #### And you've also seen these: - ...spinach sautéed with garlic over rice - Chard stems and leaves are delicious - Collard greens and other salty leafy greens #### Conclusion: - Ongchoi is a leafy green like spinach, chard, or collard greens - We could conclude this based on words like "leaves" and "delicious" and "sauteed" # embeddings may have larger-scale semantic structure? - Hierarchical distributional word clusters, trained from tweets: http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html - What distinctions is it learning? # embeddings may have larger-scale semantic structure? ## Pretraining corpus is key - Language models—including word embeddings learned via LMs enable transfer learning from the pretraining corpus, to whatever your desired end-task is - Ideally: train on domain-specific corpus. Usually: use Wikipedia + random web pages (is this good??) - The content of the pretraining corpus is very important!! ## Word use over time [Hamilton et al. 2016] #### ok so what can we do with them? Transfer learning from large, unsup. corpus - Document embeddings - I. Supervised learning: Bag-of-Embeddings logreg - labeled train docs->labeled new docs - 2. Unsupervised learning / exploratory analysis - docs->[analysis] - Wordlist-based inferences - 3. Semi-automatic dictionary expansion - (words->words) - 4. <u>DDR</u>: Distrib. Dict. Representations - (words->docs) ## Unsup. learning with document embedding - Example: tweets about mass shootings (Demszky et al. 2019) - 1. Average word embeddings => tweet embeddings - 2. Cluster tweets (k-means) - 3. Interpret clusters' words (closest to centroid) | Topic | 10 Nearest Stems | |--------------------|--| | news | break, custodi, #breakingnew, #updat, confirm, | | (19%) | fatal, multipl, updat, unconfirm, sever | | investigation | suspect, arrest, alleg, apprehend, custodi, | | (9%) | charg, accus, prosecutor, #break, ap | | shooter's identity | extremist, radic, racist, ideolog, label, | | & ideology (11%) | rhetor, wing, blm, islamist, christian | | victims & location | bar, thousand, california, calif, among, | | (4%) | los, southern, veteran, angel, via | | laws & policy | sensibl, regul, requir, access, abid, #gunreformnow, | | (14%) | legisl, argument, allow, #guncontolnow | | solidarity | affect, senseless, ach, heart, heartbroken, | | (13%) | sadden, faculti, pray, #prayer, deepest | | remembrance | honor, memori, tuesday, candlelight, flown, | | (6%) | vigil, gather, observ, honour, capitol | | other | dude, yeah, eat, huh, gonna, ain, | | (23%) | shit, ass, damn, guess | Table 1: Our eight topics (with their average proportions across events) and nearest-neighbor stem embeddings to the cluster centroids. Topic names were manually assigned based on inspecting the tweets. # Sup. learning with document embedding - Instead of bag-of-words, can we derive a latent embedding of a document/sentence? - "Bag of embeddings" or "averaged word embeddings" representation - You can use it just like a BOW logistic regression it's just a different type of feature vector - Pros/cons? - Especially for shorter texts, BoE LR typically outperforms BOW LR. See: Arora et al. 2017 ### Application: doc sim to words - Given a word list to represent a concept, can we score a document for how much it expresses that concept? - DDR is a very simple embedding approach: - Average the word lists embeddings to create a concept vector - Average a doc's words to create a document vector - Apply cosine similarity! - Supplying a set of keywords is low-supervision, or lowexpertise, approach compared to labeling docs - Though you don't get a nice logreg probability (until you label some...) ## LIWC "posemo" list accept, accepta*, accepted, accepting, accepts, active*, admir*, ador*, advantag*, adventur*, affection*, agree, agreeab*, agreed, agreeing, agreement*, agrees, alright*, amaz*, amor*, amus*, aok, appreciat*, assur*, attachment*, attract*, award*, awesome, beaut*, beloved, benefic*, benefit, benefit*, benefitt*, benevolen*, benign*, best, better, bless*, bold*, bonus*, brave*, bright*, brillian*, calm*, care, cared, carefree, careful*, cares, caring, casually, certain*, challeng*, champ*, charit*, charm*, cheer*, cherish*, chuckl*, clever*, comed*, comfort*, commitment*, compassion*, compliment*, confidence, confidently, considerate, contented*, contentment, convinc*, cool, courag*, create*, creati*, credit*, cute*, cutie*, daring, darlin*, dear*, definite, definitely, delectabl*, delicate*, delicious*, deligh*, determina*, determinad, devot*, digni*, divin*, dynam*, eager*, ease*, easie*, easily, easiness, easing, easy*, ecsta*, efficien*, elegan*, encourag*, energ*, engag*, enjoy*, entertain*, enthus*, excel*, excit*, fab, fabulous*, faith*, fantastic*, favor*, favour*, fearless*, festiv*, fiesta*, fine, flatter*, flawless*, flexib*, flirt*, fond, fondly, fondness, forgave, forgiv*, free, freeb*, freed*, freeing, freely, freeness, freer, frees*, friend*, fun, funn*, genero*, gentle, gentler, gentlest, gently, giggl*, giver*, giving, glad, gladly, glamor*, glamour*, glori*, glory, good, goodness, gorgeous*, grace, graced, graceful*, graces, graci*, grand, grande*, gratef*, grati*, great, grin, grinn*, grins, ha, haha*, handsom*, happi*, happy, harmless*, harmon*, heartfelt, heartwarm*, heaven*, heh*, helper*, helpful*, helping, helps, hero*, hilarious, hoho*, honor*, honor*, honour*, hope, hoped, hopeful, hopefully, hopefulness, hopes, hoping, hug, hugg*, hugs, humor*, humour*, hurra*, ideal*, importan*, impress*, improve*, improving, incentive*, innocen*, inspir*, intell*, interest*, invigor*, joke*, joking, joll*, joy*, keen*, kidding, kind, kindly, kindn*, kiss*, laidback, laugh*, libert*, like, liked, likes, liking, livel*, lmao, lol, love, loved, lovely, lover*, loves, loving*, loval*, luck, lucked, lucki*, lucks, lucky, madly, magnific*, merit*, merr*, neat*, nice*, nurtur*, ok, okay, okay, okay, okay, okay, openminded*, openness, opport*, optimal*, optimi*, original, outgoing, painl*, palatabl*, paradise, partie*, party*, passion*, peace*, perfect*, play, played, playful*, playing, plays, pleasant*, please*, pleasing, pleasur*, popular*, positiv*, prais*, precious*, prettie*, pretty, pride, privileg*, prize*, profit*, promis*, proud*, radian*, readiness, ready, reassur*, relax*, relief, reliev*, resolv*, respect, revigor*, reward*, rich*, rofl, romanc*, romantic*, safe*, satisf*, save, scrumptious*, secur*, sentimental*, share, shared, shares, sharing, silli*, silly, sincer*, smart*, smil*, sociab*, soulmate*, special, splend*, strength*, strong*, succeed*, success*, sunnier, sunniest, sunny, sunshin*, super, superior*, supported, supporter*, supporting, supportive*, supports, suprem*, sure*, surpris*, sweet, sweetheart*, sweetie*, sweetly, sweetness*, sweets, talent*, tehe, tender*, terrific*, thank, thanked, thankf*, thanks, thoughtful*, thrill*, toleran*, tranquil*, treasur*, treat, triumph*, true, trueness, truer, truest, truly, trust*, truth*, useful*, valued, v vigour*, virtue*, virtue*, virtue*, virtue*, virtue*, virtue*, warm*, wealth*, welcom*, well, win, winn*, wins, wisdom, wise*, won, wonderf*, worship*, worthwhile, wow*, yay, yays Fig. 4 Nearest neighbors of the LIWC positive emotions dictionary ### Pretraining corpus is key - Language models—this week, word embeddings learned via LMs—enable transfer learning from the pretraining corpus, to whatever your desired end-task is - Ideally: train on domain-specific corpus. Usually: use Wikipedia + random web pages (is this good??) - The content of the pretraining corpus is very important!! - The best word embedding releases document and explore the implications of how they chose their pretraining corpus.