Neural LMs and Word Embeddings

CS 685, Fall 2025

Advanced Natural Language Processing https://people.cs.umass.edu/~brenocon/cs685 f25/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

- Office hours start this week
- No live zoom; lecture recordings instead (Echo360/Canvas)
- Hope HWI is going well!
- Approximate midterm dates
 - Midterm #1: Early October
 - Midterm #2: Mid-November
 - (might be in-class, TBD)

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

(Partial) Solution: Add small δ to count for every $w_j \in V$. This is called *smoothing*.

$$p(w_j|\text{ students opened their}) = \frac{\text{count(students opened their }w_j)}{\text{count(students opened their)}}$$

Sparsity problem is really bad for n-grams!

Smoothing doesn't address the real problem: composition of language

Problems with n-gram Language Models

 We treat all words / prefixes independently of each other

students opened their ____ Shouldn't we share information across these semantically-similar prefixes?

undergraduates opened their ____ students turned the pages of their ____ students attentively perused their ____

4

Today

- Question: how to flexibly represent word meanings?
 - Word embeddings, a key tool for all major NLP models
 - ... which work because of the principle of distributional similarity
- Key idea: automatically induce word meanings from unlabeled text
- Two-ish models that use or produce word embeddings
 - I. Markov neural LM (left-to-right)
 - 2. Skip-gram LM ("word2vec")
- Why?
 - Better left-to-right LMs
 - Word embeddings can be used directly (e.g. for lexical semantics or text classification; more on Thursday)

What is a pawpaw?

I. Look it up in a dictionary

https://www.merriam-webster.com/

https://www.oed.com/

https://en.wiktionary.org/

pawpaw noun

paw·paw

variants: or less commonly papaw

Definition of pawpaw

1 \ pə-'po 💿 \ : PAPAYA

2 \ 'pä-(,)po , 'po-\: a North American tree (*Asimina triloba*) of the custard-apple family with purple flowers and an edible green-skinned fruit

also: its fruit

II. Look it at how its used

- " Pawpaw, Most Neglected American Fruit." NYTimes 1922
- "Pawpaw Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" NYTimes 1942
- "The <u>pawpaw</u> is also pollinated by flies and other insects rather than by honeybees..."—NYTimes <u>2020</u>
- "Many people also cook with ripe <u>pawpaws</u>, making bread, beer, ice cream, or this <u>pawpaw</u> pudding..." NYTimes <u>2020</u>

II. Look it at how its used

- "Pawpaw, Most Neglected American Fruit ." NYTimes 1922
- "Pawpaw Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" NYTimes 1942
- "The *pawpaw* is also **pollinated** by **flies** and other insects rather than by honeybees..."—NYTimes <u>2020</u>
- "Many people also <u>cook</u> with <u>ripe</u> pawpaws, making <u>bread</u>, <u>beer</u>, <u>ice</u> <u>cream</u>, or this pawpaw <u>pudding</u>..." NYTimes <u>2020</u>

Aspects of word meaning

Synonyms

- · couch / sofa
- · oculist / eye doctor
- · car / automobile
- · water / H₂ O
- · draft / draught

Antonyms

- · yes / no
- · dark / light
- · hot / cold
- · up / down
- · clip / clip

Aspects of word meaning

Similarity

- · cat / dog
- · cardiologist / pulmonologist
- · car / bus
- · sheep / goat
- · glass / mug

Relatedness

- · coffee / cup
- · waiter / menu
- · farm / cow
- · house / roof
- · theater / actor

Aspects of word meaning

- Connotation: the affective meaning of a word
- Osgood (1957)'s three-dimensional model:
 - Valence
 - unhappy, annoyed <-----> happy, satisfied
 - Arousal
 - calm <-----> excited
 - Dominance
 - awed, influences <----> controlling

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

Learning word representations

- How to get word meanings?
 - Lexical resources like WordNet: dictionary-like databases of word synonyms & other word-to-word relationships, constructed manually
 - Can sometimes help, but typically don't cover all words or meanings any particular task needs
- Landauer and Dumais (citing many philosophers, etc.): it's crazy how much knowledge humans have. You can't look it all up in a dictionary!
- OK, can we learn the word representations instead?

Distributional Semantics

"You shall know a word by the company it keeps!" — Firth (1957)

Intuitions: Harris (1954)

"If A and B have almost identical environments except chiefly sentences which contain both, we say they are synonyms: *oculist* and *eye-doctor*."

Learning word representations

- Could we automatically learn word meanings?
 - I.We'd like to generalize word meanings beyond individual words, and
 - 2. Information from nearby words gives information about a word

Word embeddings

- Represent words with low(ish)-dimensional vectors called embeddings
- Every word in vocabulary has a vector these are model parameters.
 - Ideally: semantically similar words get similar vectors. Or other semantic properties??

king =

Male-Female

Verb tense

Country-Capital

Left-to-right LM as linear softmax

- Instead of only n-gram count ratios, model the next-word as softmax over the vocabulary.
- We can use anything to help predictions: features
 (Rosenfeld 1996) or MLP neural net (Bengio et al. 2003) or weird neural net (Vaswani 2017: self-attention) to compose y

Output layer (softmax)
$$\hat{P}(w_t|w_{t-1},\cdots w_{t-n+1}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}.$$

y: length V vector

 $y = f(w_{t-1}, ... w_{t-n+1})$

Can use any information from the left context

Bengio et al. 2003: Markov word embedding LM

Key idea: represent words on left as **vectors.** Learn a vector for each word in the vocabulary. Better perplexity than an n-gram LM!

Matrix C

index for w_{t-2}

shared parameters

index for w_{t-1}

across words

Table

in C

look-up

index for w_{t-n+1}

(ignore today)

$$x = (C(w_{t-1}), C(w_{t-2}), \cdots, C(w_{t-n+1}))$$

Word vector lookup layer with concatenation

$$C(i) \in \mathbb{R}^m$$
 Word embedding parameters

Bengio et al. 2003: Markov word embedding LM

Key idea: represent words on left as **vectors**. Learn a vector for each word in the vocabulary.

Output layer (softmax)
$$\hat{P}(w_t|w_{t-1},\cdots w_{t-n+1}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}.$$

$$x = (C(w_{t-1}), C(w_{t-2}), \cdots, C(w_{t-n+1}))$$

Word vector lookup layer with concatenation

$$C(i) \in \mathbb{R}^m$$
 Word embedding parameters

 Learning: follow the gradient of the negative loglikelihood (more on this in coming weeks)

Build vectors based on context

Neural Word Embeddings

Skip- Gram with Negative Sampling (SGNS)

The brown fox jumps over the lazy dog

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog.

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog.

Simple idea: from a word, predict its context words!

(A funny type of language model.)

Learn a vector that's good at that. Similar words should get similar vectors.

Key idea: use unlabeled text as implicitly supervised data

- A word s near apricot
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
- The idea comes from neural language modeling
 - Bengio et al. (2003)
 - Collobert et al. (2011)

Modeling goal

- Given a (word, context) tuple
 - [+] (apricot, jam) <- observed
 - [-] (apricot, aardvark) <- unseen
- Want binary probability
 - P(c | w) for a real context (+)
 - 1-P(c | w) for a "fake", unseen context [–])
- Let u_t and v_c be their vectors.
- $P(c \mid w) = \sigma(u_w'v_c)$: logistic in their *affinity/similarity*
- Maximize P(c | w) for all (w, c) pairs

SGNS: Negative Sampling

Co-occurrence jumps, fox:

SGNS: Negative Sampling

Co-occurrence jumps, fox:

- Can word embeddings be directly used?
- Most basic type of information: word-to-word similarity!

Euclidean Distance

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Issue: Vector length depends on frequency. More frequent words will have longer vectors.

Cosine Similarity

$$s(x,y) = \frac{x \cdot y}{|x||y|}$$

Only depends on vector angle

Range:

What does it learn?

- Demo: GLOVE embedding similarities
 - fasttext, glove, and word2vec are most-often used pretrained word embeddings

embeddings may have larger-scale semantic structure?

- Hierarchical distributional word clusters, trained from tweets: http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
- What distinctions is it learning?

embeddings may have larger-scale semantic structure?

