

BERT & Beyond

CS 490A, Fall 2021

Applications of Natural Language Processing
https://people.cs.umass.edu/~brenocon/cs490a_f21

Brendan O'Connor & Laure Thompson

College of Information & Computer Sciences
University of Massachusetts Amherst

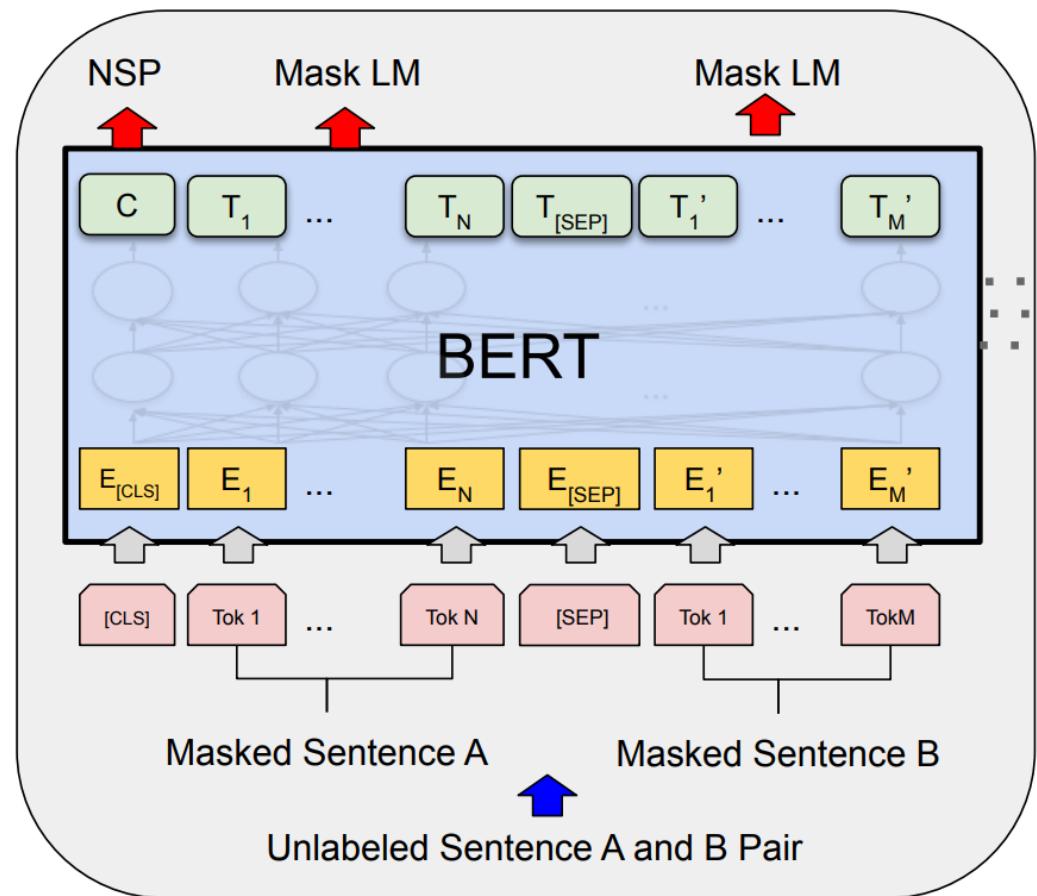
Administrivia

- Project Progress Report due **Monday**, 11/22
- Hugging Face (transformers) tutorial **tomorrow**, 11/19, @ 11am on Zoom
- HW4 will be released next week

BERT: Bidirectional Encoder Representations for Transformers

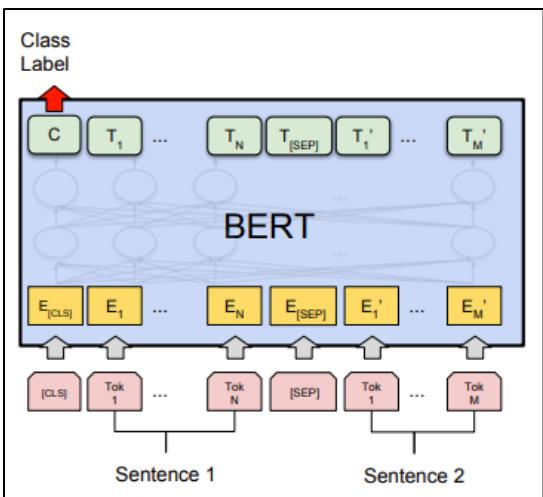
Devlin et al. 2019

Pre-Training

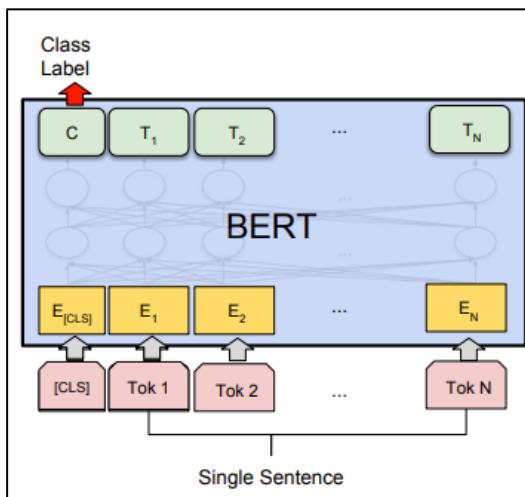


Fine-Tuning

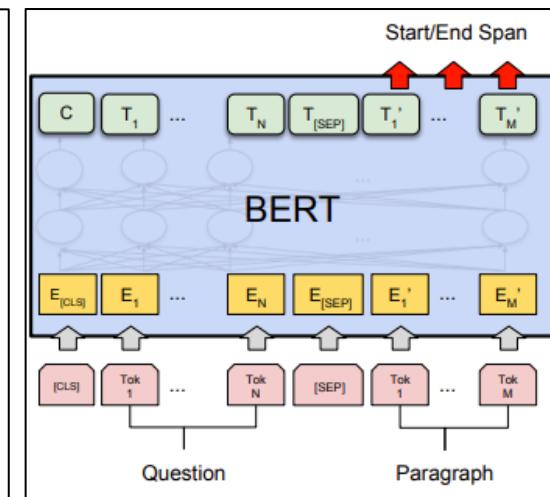
Sentence Pair
Classification



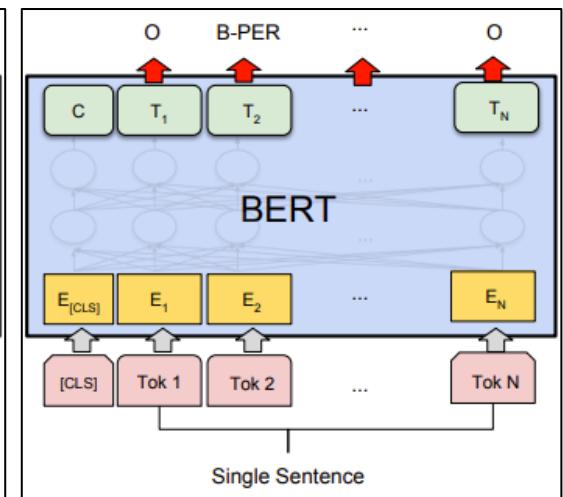
Single Sentence
Classification



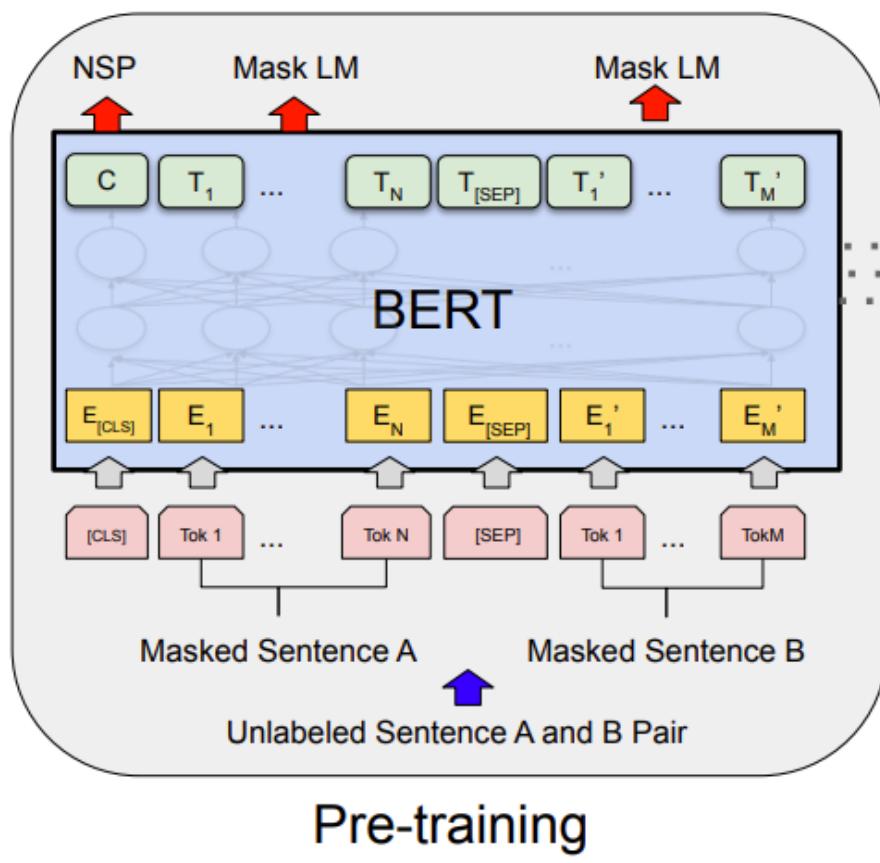
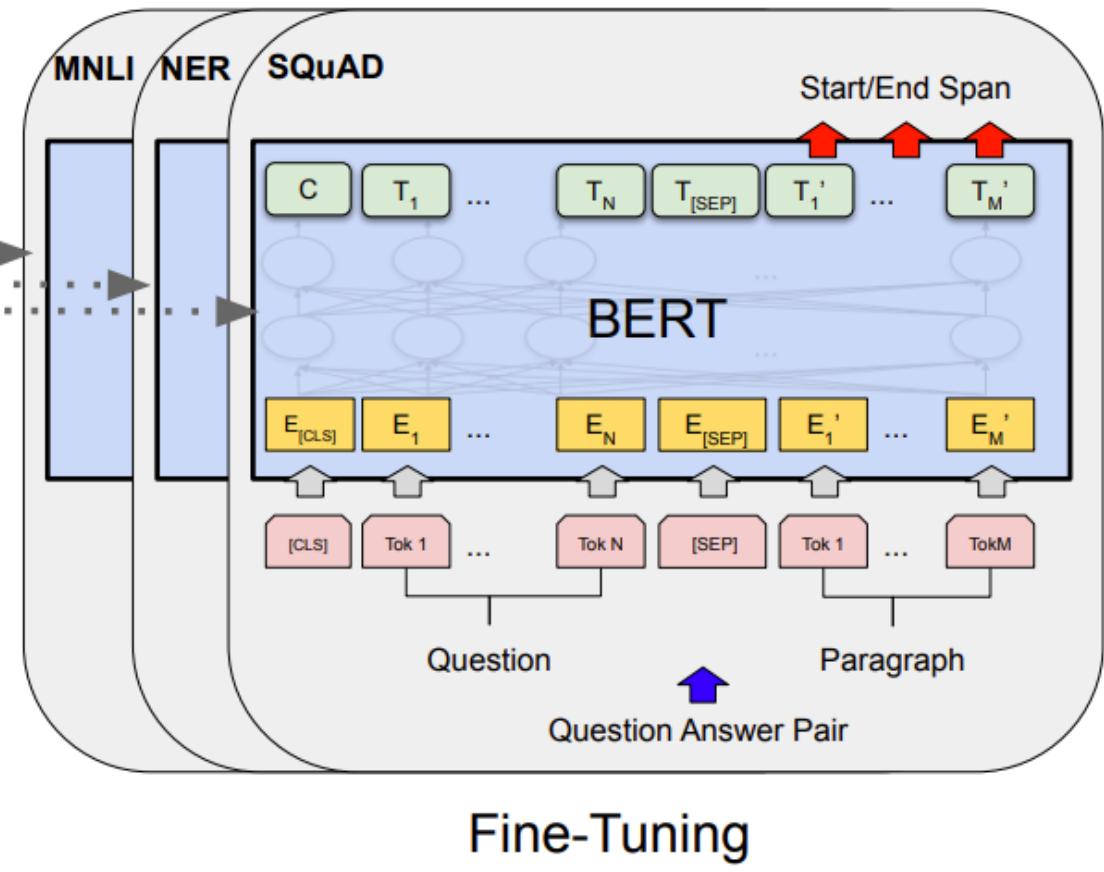
Question
Answering



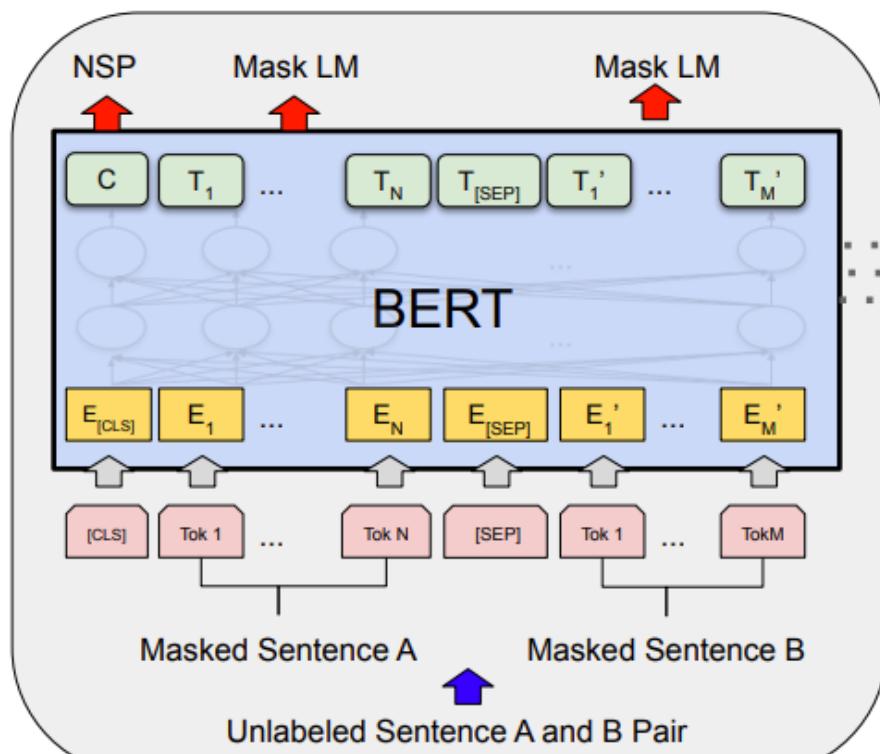
Single Sentence
Tagging



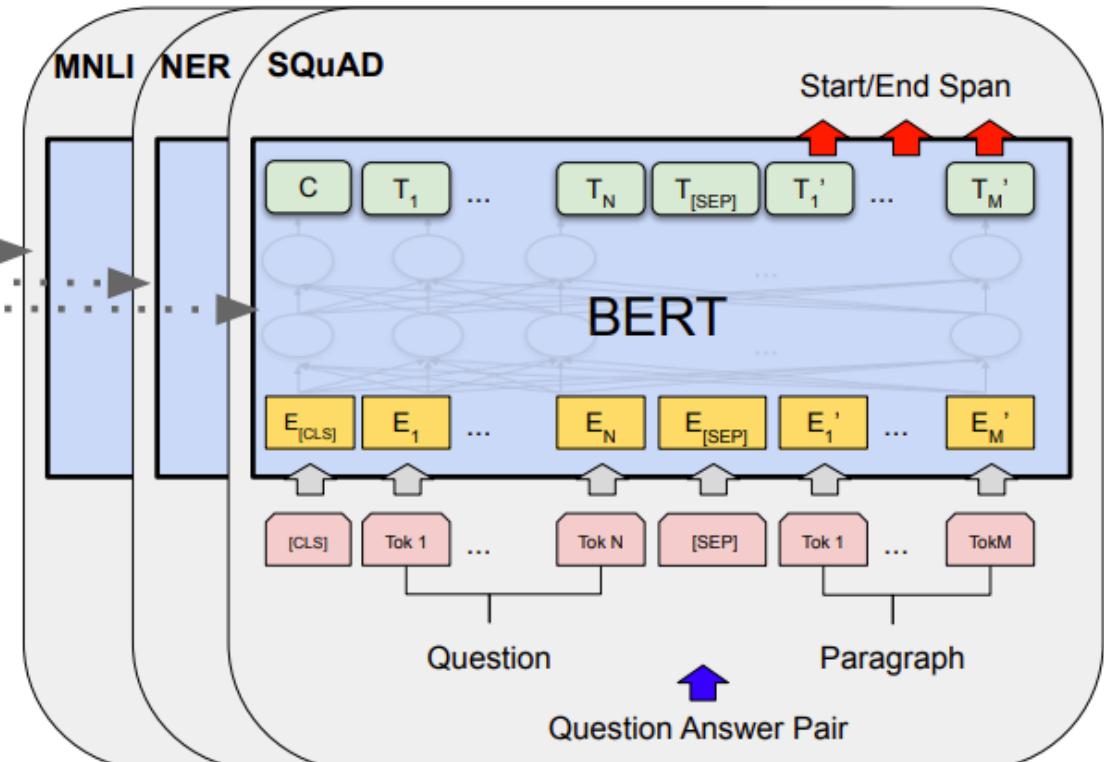
Pre-Training vs. Fine-Tuning



Same internal architecture

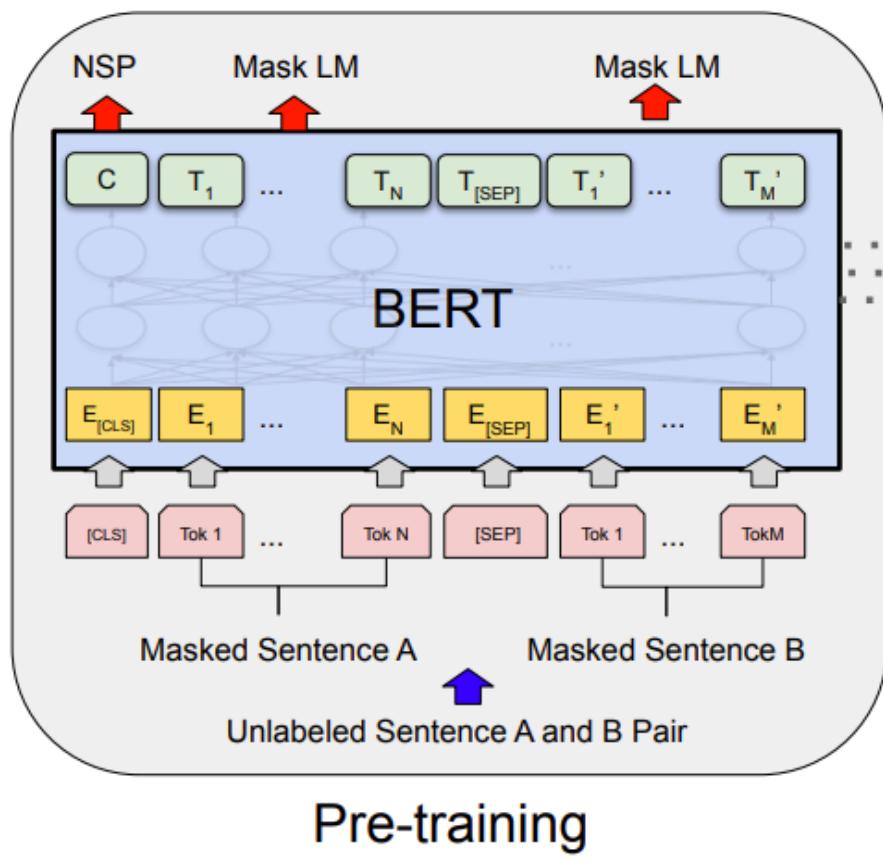
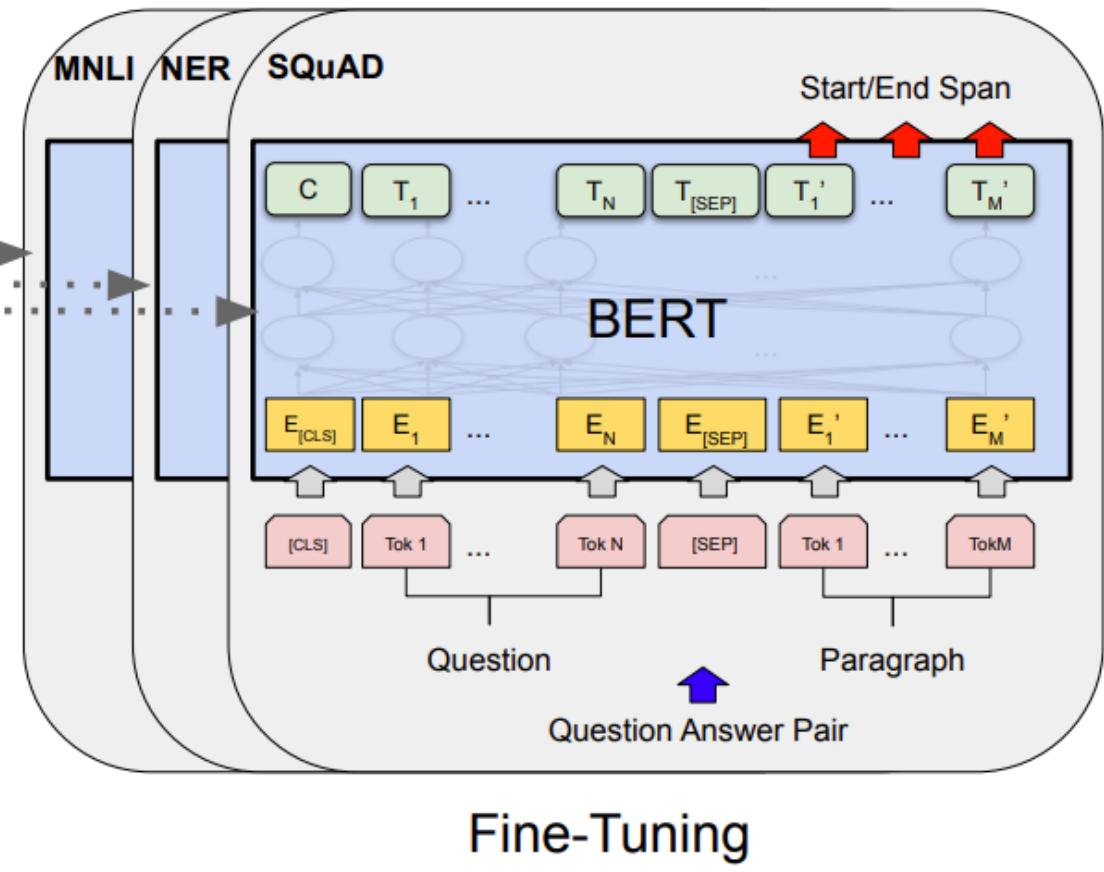


Pre-training



Fine-Tuning

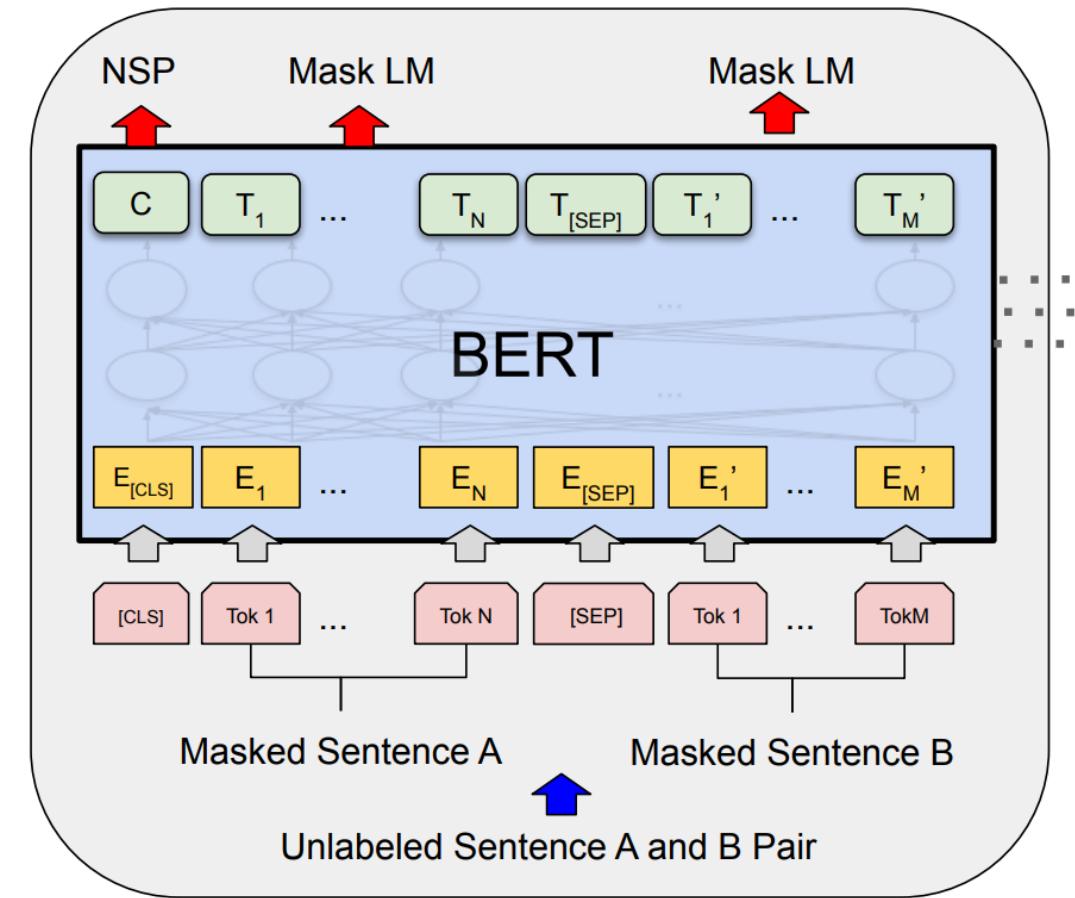
Different output layers & loss functions



Pre-Training BERT Tasks

(1) Masked Language Model

(2) Next Sentence Prediction



Devlin et al. 2019

Masked Language Model Procedure

Example: my dog is hairy

- 80% of the time: Replace the word with the [MASK] token

my dog is **[MASK]**

- 10% of the time: Replace the word with a random word

my dog is **apple**

- 10% of the time: Keep the word unchanged

my dog is **hairy**

Masked Language Model Procedure

Example: my dog is hairy

- 80% of the time: Replace the word with the [MASK] token
Bidirectional language modeling
my dog is [MASK]

- 10% of the time: Replace the word with a random word

my dog is **apple**

- 10% of the time: Keep the word unchanged

my dog is **hairy**

Masked Language Model Procedure

Example: my dog is hairy

- 80% of the time: Replace the word with the [MASK] token

Bidirectional language modeling
my dog is [MASK]

- 10% of the time: Replace the word with a random word

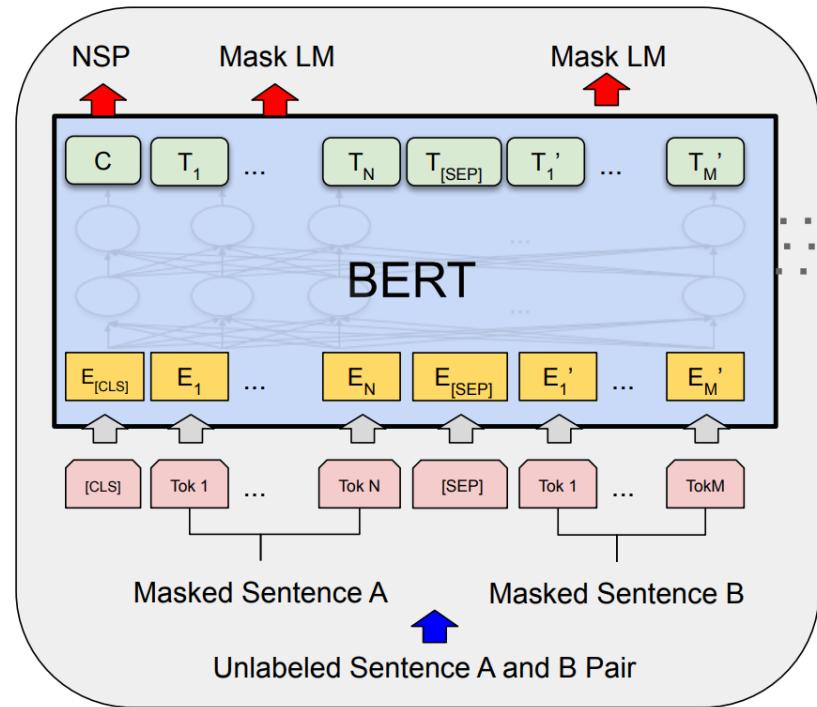
Mitigate mismatch between
my dog is apple

- 10% of the time: ~~Keep the word unchanged~~
pre-training & fine-tuning

my dog is hairy

Pre-Training BERT: MLM

Idea: Predict vocab ID of masked tokens from final embeddings



Masked Language Model Head

1. Transform T_i into a vector with `vocab_size` dimensions

Masked Language Model Head

1. Transform T_i into a vector with `vocab_size` dimensions
2. Use softmax to obtain a probability distribution over the vocabulary

Masked Language Model Head

1. Transform T_i into a vector with `vocab_size` dimensions
2. Use softmax to obtain a probability distribution over the vocabulary
3. *Use argmax to identify the most probable token*

Masked Language Model Head

1. Transform T_i into a vector with `vocab_size` dimensions
2. Use softmax to obtain a probability distribution over the vocabulary
3. *Use argmax to identify the most probable token*

Loss Function: cross-entropy of distribution from 2

Only use masked tokens to calculate loss!

Cross-Entropy

True distribution p and estimating distribution q

$$H(p, q) = \sum_{x \in \mathcal{X}} p(x) \log q(x)$$

Cross-Entropy

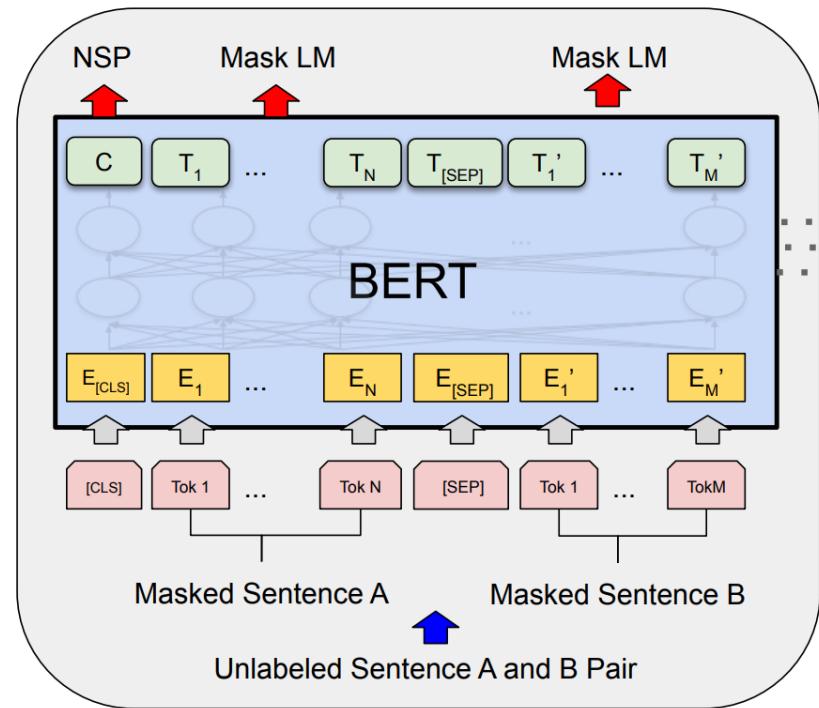
True distribution p and estimating distribution q

$$H(p, q) = \sum_{x \in X} p(x) \log q(x)$$

$$\begin{aligned} H(p, q) &= p(x_{true}) \log q(x_{true}) \\ &= \log q(x_{true}) \end{aligned}$$

Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the final embedding of the [CLS] token



Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions

Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions
2. Use softmax to obtain a probability distribution over the two classification labels

Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions
2. Use softmax to obtain a probability distribution over the two classification labels
3. *Predict the more probable label*

Next Sentence Prediction Head

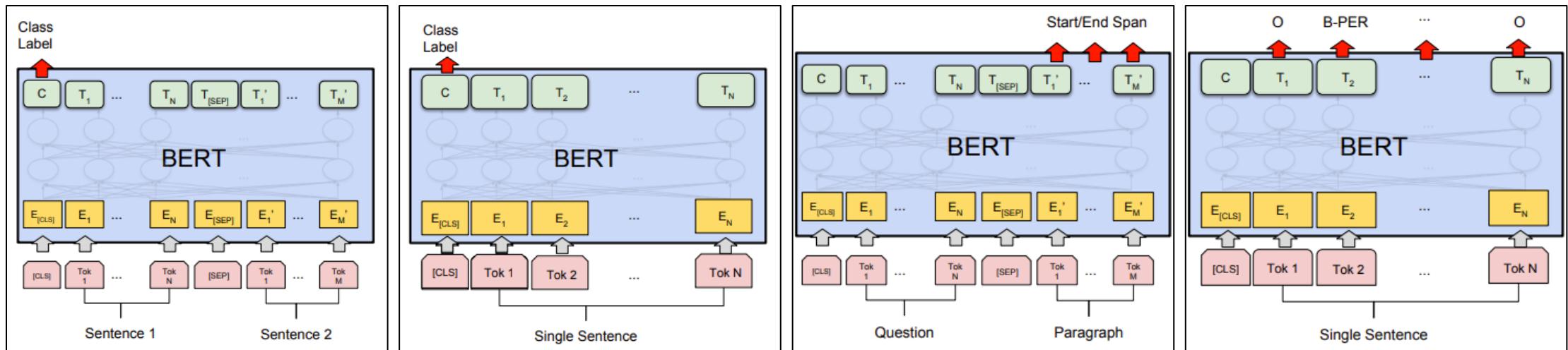
1. Transform C into a vector with 2 dimensions
2. Use softmax to obtain a probability distribution over the two classification labels
3. *Predict the more probable label*

This is just a binary classification task!

Fine-Tuning

Use pre-trained **model parameters** for initialization

Change pre-training **output layers** of BERT to suit task



Huge gains for many tasks!

GLUE Results

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Huge gains for many tasks!

GLUE Results

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

MNLI = Multi-genre Natural Language Inference

Premise	A woman selling bamboo sticks talking to two men on a loading dock.
Entailment	There are at least three people on a loading dock.
Neutral	A woman is selling bamboo sticks to help provide for her family .
Contradiction	A woman is not taking money for any of her sticks.

Huge gains for many tasks!

GLUE Results

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

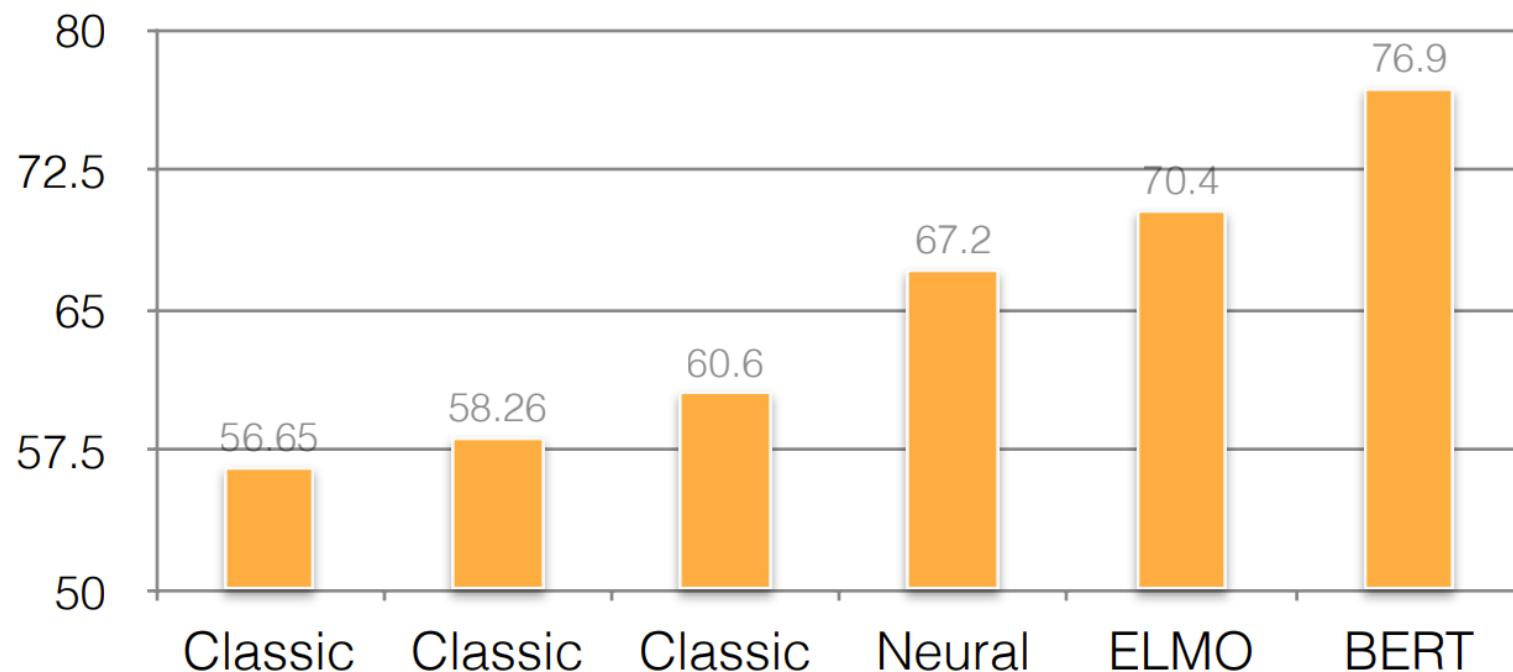
CoLA = Corpus of Linguistic Acceptability

Included	Morphological Violation	(a)	*Maryann should leaving.
	Syntactic Violation	(b)	*What did Bill buy potatoes and _?
	Semantic Violation	(c)	*Kim persuaded it to rain.
Excluded	Pragmatical Anomalies	(d)	*Bill fell off the ladder in an hour.
	Unavailable Meanings	(e)	*He _i loves John _i . (<i>intended</i> : John loves himself.)
	Prescriptive Rules	(f)	Prepositions are good to end sentences with.
	Nonce Words	(g)	*This train is arrivable.

Devlin et al. 2019; Warstadt et al. 2019

Huge gains for many tasks! Coreference Resolution

“I voted for **Nader** because **he** was most aligned with
my values,” **she** said.



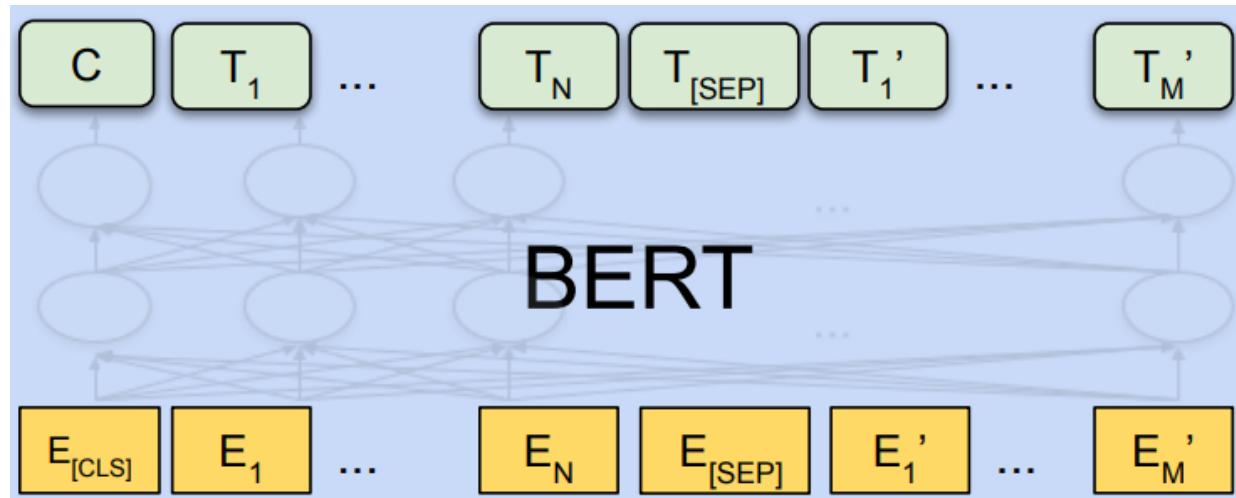
From slide of Bamman (2021)

Using BERT

BERT “Internal” Features

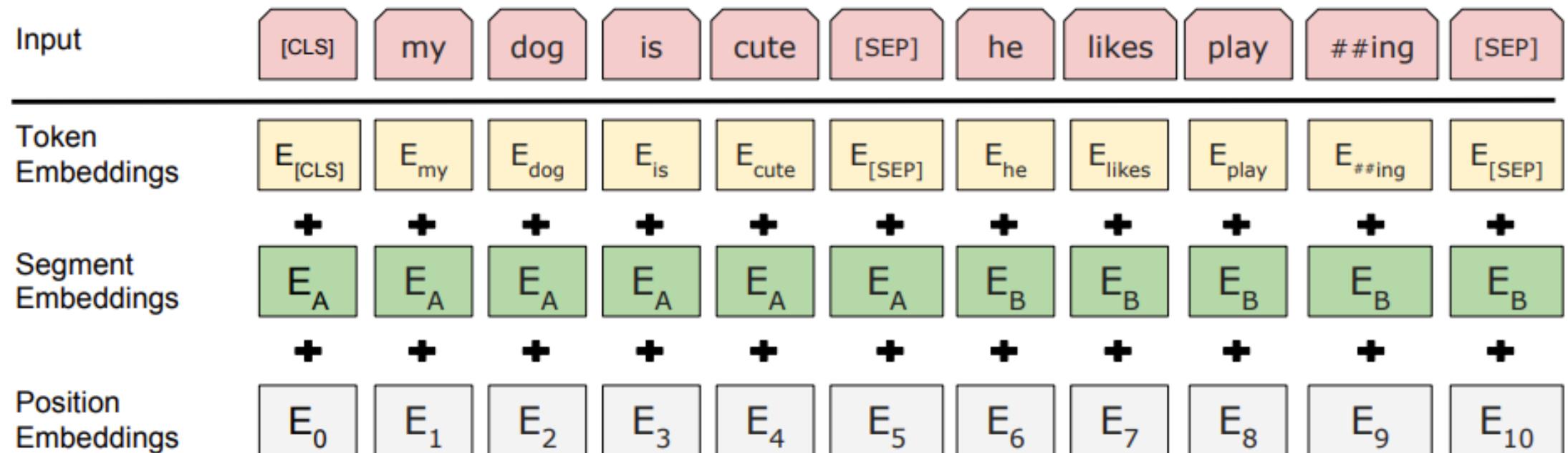
Internal token-level embeddings are 768 dimensions

One for encoding layer, one for each hidden layer (12)



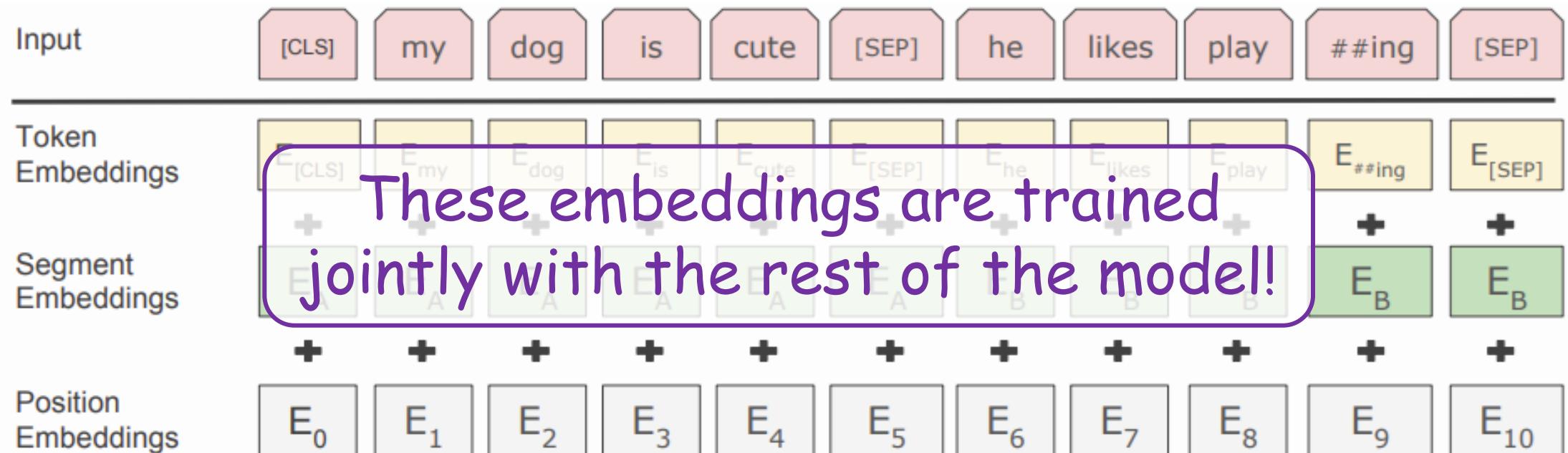
Building Initial Token Embeddings

The input token embeddings E_i are the sum of 3 embeddings encoding token, segment, and position information



Building Initial Token Embeddings

The input token embeddings E_i are the sum of 3 embeddings encoding token, segment, and position information



BERT (Sub)Tokens

BERT tokens do **not** strictly correspond to word tokens

Subword-Based Tokenization

the dog fetched the stick

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Character-Based: t, h, e, _, d, o, g, _, f, e, t, c, h, e, d, _,
t, h, e, _, s, t, i, c, k

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Token-Based: the, dog, fetch, ##ed, the, stick

Character-Based: t, h, e, _, d, o, g, _, f, e, t, c, h, e, d, _,
t, h, e, _, s, t, i, c, k

Class Activity

colab.research.google.com/drive/1v3iustM3huxMVSItknowzWGwdrQpZoco

WordPiece

Goal: Given a training corpus and number of desired tokens D ,
select D wordpieces (i.e., subtokens) so that the training
corpus is minimally segmented

WordPiece

Goal: Given a training corpus and number of desired tokens D , select D wordpieces (i.e., subtokens) so that the training corpus is minimally segmented

Top-Down: Break the starting vocabulary into smaller components until there are only D

Alternative: Byte Pair Encoding (BPE)

Used by GPT-2 and RoBERTa

Goal: Using a training corpus build a set of **D** subtokens to tokenized the training corpus

Alternative: Byte Pair Encoding (BPE)

Initial: The symbol vocabulary is the set of characters in the training corpus.

Do: For the most frequent 2-symbol sequence (A, B) in the training corpus, create a new symbol AB and replace all instances of with (A, B) with AB.

End: When there are D symbols.

After BERT: RoBERTa

Same BERT architecture, but with different pre-training

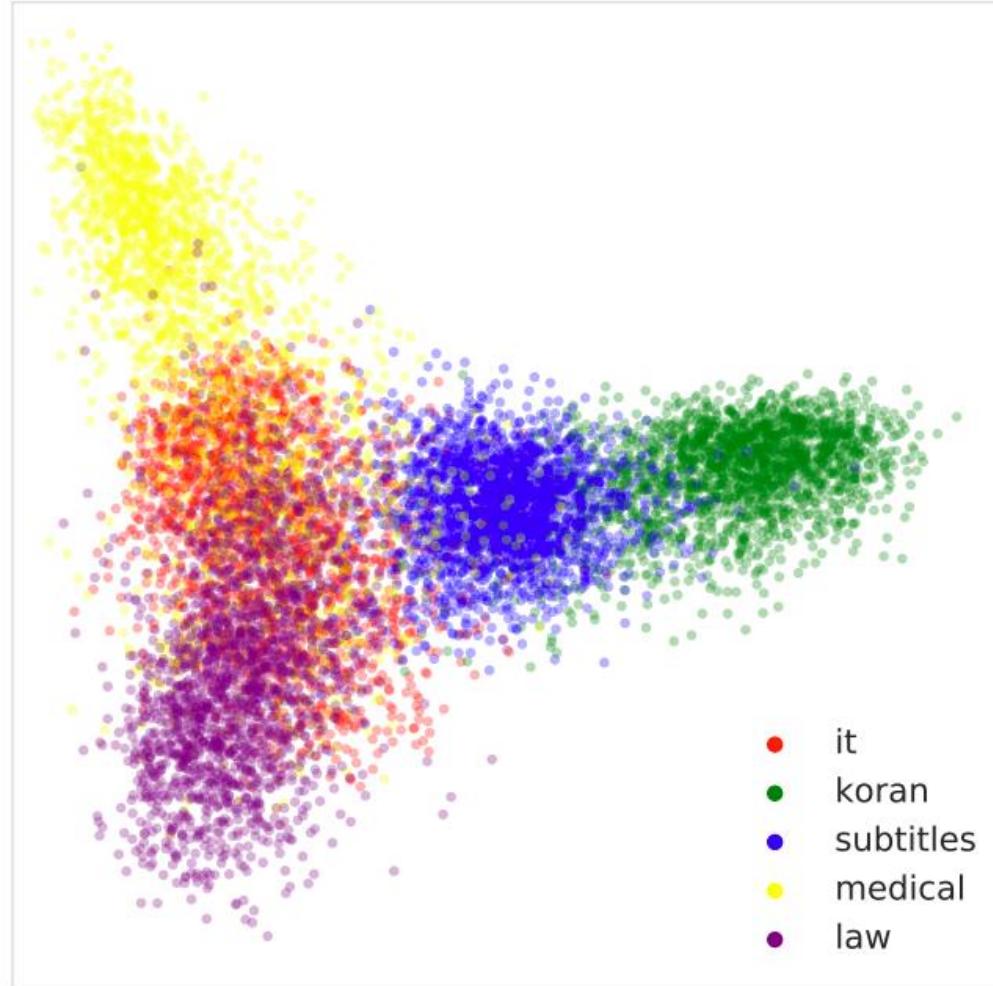
- Drop the Next Sentence Prediction pre-training task
- Use a BPE-based subtokenization method
- Pre-train with more data for a longer duration

After BERT: RoBERTa

Same BERT architecture, but with different pre-training

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT_{LARGE}						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
XLNet_{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

BERT representations reflect domain



Aharoni & Goldberg 2020

Trouble with raw embeddings

A few dimensions will dominate similarity measures such as cosine similarity and Euclidean distance

