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Administrivia

* Project Progress Report due Monday, 11/22

* Hugging Face (transformers) tutorial tomorrow, 11/19,
@11am on Zoom

« HW4 will be released next week



BERT: Bidirectional Encoder ‘

Representations for Transformers

Devlin et al. 2019
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Fine-Tuning
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Pre-Training vs. Fine-Tuning
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Same internal architecture
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—o— e B e ) O —0—0 O T
Tok1 | .. (TDI:N ][ [SEF] 1(ka1 ] TokM [CLs) ’ Tok N | [ [SEF] 1[ Tﬂ
| ' |
I
Paragraph

Masked Sentence A Masked Sentence B Question
& *
Question Answer Pair

Unlabeled Sentence A and B Pair
Fine-Tuning

-

Pre-training
Devlin et al. 2019



https://aclanthology.org/N19-1423/

Different output layers & loss functions
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Pre-Training BERT Tasks
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Masked Language Model Procedure

Example: my dog is hairy

* 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

* 10% of the time: Replace the word with a random word
my dog is apple

* 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019
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Masked Language Model Procedure

Example: my dog is hairy

Bidirectional language modeling

* 10% of the time: Replace the word with a random word
my dog is apple

* 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019
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Masked Language Model Procedure

Example: my dog is hairy

Bidirectional language modeling

Mitigate mismatch between
pre=training) & fine+tuning

Devlin et al. 2019
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Pre-Training BERT: MLM

Idea: Predict vocab ID of masked tokens from final
embeddings
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Masked Language Model Head

1. Transform T; into a vector with vocab_size dimensions

Devlin et al. 2019
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Masked Language Model Head

1. Transform T; into a vector with vocab_size dimensions

2. Use softmax to obtain a probability distribution over the
vocabulary

Devlin et al. 2019
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Masked Language Model Head

1. Transform T; into a vector with vocab_size dimensions

2. Use softmax to obtain a probability distribution over the
vocabulary

3. Use argmax to identify the most probable token

Devlin et al. 2019
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Masked Language Model Head

1. Transform T; into a vector with vocab_size dimensions

2. Use softmax to obtain a probability distribution over the
vocabulary

3. Use argmax to identify the most probable token

Loss Function: cross-entropy of distribution from 2
Only use masked tokens to calculate loss!

Devlin et al. 2019
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Cross-Entropy

True distribution p and estimating distribution g

H@p.q) = ) p()logq(x)



Cross-Entropy

True distribution p and estimating distribution g

H@p.q) = ) p()logq(x)

Hp,q) = p(Xtryue) log q(Xtrye)
= log q(Xtrve)



Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the
final embedding of the [ CLS] token
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Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions

Devlin et al. 2019
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Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions

2. Use softmax to obtain a probability distribution over the
two classification labels

Devlin et al. 2019
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Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions

2. Use softmax to obtain a probability distribution over the
two classification labels

3. Predict the more probable label

Devlin et al. 2019
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Next Sentence Prediction Head

1. Transform C into a vector with 2 dimensions

2. Use softmax to obtain a probability distribution over the
two classification labels

3. Predict the more probable label

This is just a binary classification task!

Devlin et al. 2019
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Fine-Tuning

Use pre-trained model parameters for initialization
Change pre-training output layers of BERT to suit task
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Huge gains for many tasks!
GLUE Results

System MNLI-(m/mm) QQP ONLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Devlin et al. 2019
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Huge gains for many tasks!

GLUE Results

System w QQP QNLI SST-2 CoLA STS-B  MRPC RTE Average
! 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1  82.3 93.2 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 64.8  79.8 90.4 36.0 73.3 849  56.8 71.0
OpenAl GPT 82.1/81.4 703 874 91.3 45.4 80.0 823  56.0 75.1
BERTgAsE 84.6/83.4 712 90.5 93.5 52.1 85.8 889  66.4 79.6
BERTLARGE 86.7/85.9 721 927 94.9 60.5 86.5 89.3  70.1 82.1

MNLI = Multi-genre Natural Language Inference

Premise A woman selling bamboo sticks talking to two men on a loading dock.
Entailment There are at least three people on a loading dock.
Neutral A woman is selling bamboo sticks to help provide for her family.

Contradiction A woman is not taking money for any of her sticks.

Devlin et al. 2019; Gururangan et al. 2017
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Huge gains for many tasks!
GLUE Results

System MNLI-(m/mm) QQP QNLI SST- STS-B MRPC  RTE  Average
392k 363k 108k 67k . 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 64.8  79.8 90.4 36.0 73.3 849 568 71.0
OpenAl GPT 82.1/81.4 703 874 91.3 45.4 80.0 823 56.0 75.1
BERT3AsE 84.6/83.4 712 905 93.5 52.1 85.8 889  66.4 79.6
BERTLARGE 86.7/85.9 721 927 94.9 60.5 86.5 89.3  70.1 82.1

CoLA = Corpus of Linguistic Acceptability

Morphological Violation (a) *Maryann should leaving.
Included Syntactic Violation (b) *What did Bill buy potatoes and _?
Semantic Violation (c) *Kim persuaded it to rain.

Pragmatical Anomalies (d) *Bill fell off the ladder in an hour.

Unavailable Meanings (e) *He,; loves John,. (intended: John loves himself.)

Excluded .. .. :
Prescriptive Rules (f)  Prepositions are good to end sentences with.
Nonce Words (g) *This train is arrivable.

Devlin et al. 2019; Warstadt et al. 2019
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Huge gains for many tasks!
Coreference Resolution

“I voted for Nader because he was most aligned with
my values,” she said.
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From slide of Bamman (2021)



https://people.ischool.berkeley.edu/~dbamman/info256_slides/15.attention.pdf
https://people.ischool.berkeley.edu/~dbamman/info256_slides/15.attention.pdf

Using BERT



BERT “Internal” Features

K
Internal token-level embeddings are 768 dimensions
One for encoding layer, one for each hidden layer (12)
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Building Initial Token Embeddings

The input token embeddings E; are the sum of 3 embeddings
encoding token, segment, and position information

Input [CLS] | my dog is | cute W [SEP] he ( likes M play W ##ing W [SEP]

Token

Emheddingg E[I:LS] Emv Edﬂg Eis Er:ute E[S.EF'] Ehe Elikes. play E”ing E[SEF‘]
b == L b == e o e - e = e

Segment Q ) g v . © \ \ \
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Devlin et al. 2019
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Building Initial Token Embeddings

The input token embeddings E; are the sum of 3 embeddings
encoding token, segment, and position information
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These embeddings are trained )
jointly with the rest of the model!
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BERT (Sub)Tokens

BERT tokens do not strictly correspond to word tokens

(m] ”my” d.-.:.g” s || cute” [SEP] M he M likes {plaﬂ( ##ingw [SEP]W
N

Devlin et al. 2019
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Subword-Based Tokenization

the dog fetched the stick



Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick



Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Character-Based: t, h,e, ,d,o0,g, ,f,e, t,c,h,ed, ,
t,h,e, ,s,t,1,¢k



Subword-Based Tokenization

the dog fetched the stick
Word-Based: the, dog, fetched, the, stick
Token-Based: the, dog, fetch, #i#ed, the, stick

Character-Based: t, h,e, ,d,o0,g, ,f,e, t,c,h,ed, ,
t,h,e, ,s,t,1,¢k



Class Activity

colab.research.google.com/drive/1v3iustM3huxMVSItknowzWGwdrOpZoco
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WordPiece

Goal: Given a training corpus and number of desired tokens D,
select D wordpieces (1.e., subtokens) so that the training
corpus is minimally segmented

Wu et al. 2016
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WordPiece

Goal: Given a training corpus and number of desired tokens D,
select D wordpieces (i.e., subtokens) so that the training
corpus is minimally segmented

Top-Down: Break the starting vocabulary into smaller
components until there are only D

Wu et al. 2016
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Alternative: Byte Pair Encoding (BPE)

Used by GPT-2 and RoBERTa

Goal: Using a training corpus build a set of D subtokens to
tokenized the training corpus

Sennrich et al. 2016



https://aclanthology.org/P16-1162/

Alternative: Byte Pair Encoding (BPE)

Initial: The symbol vocabulary is the set of characters in the
training corpus.

Do: For the most frequent 2-symbol sequence (A, B) in the
training corpus, create a new symbol AB and replace all
Instances of with (A, B) with AB.

End: When there are D symbols.

Sennrich et al. 2016
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After BERT: RoBERTa

Same BERT architecture, but with different pre-training
* Drop the Next Sentence Prediction pre-training task

 Use a BPE-based subtokenization method
* Pre-train with more data for a longer duration

Liu et al. 2019
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After BERT: RoBERTa

Same BERT architecture, but with different pre-training

Model data  bsz steps (:’?Eﬁ} MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERTL.—".RGE
with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNet, srce '\;
with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Liu et al. 2019
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BERT representations reflect domain

it
koran
e subtitles
medical
e law

Aharoni & Goldberg 2020
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Trouble with raw embeddings

A few dimensions will dominate similarity measures such as
cosine similarity and Euclidean distance

roberta-base layer # 12 bert-base-cased layer # 12

Cosine
Similarity ||

____________________________________________________________________
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Timkey & van Schijndel 2021
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