BERT & Beyond

CS 490A, Fall 2021

Applications of Natural Language Processing <u>https://people.cs.umass.edu/~brenocon/cs490a_f21</u>

Brendan O'Connor & Laure Thompson

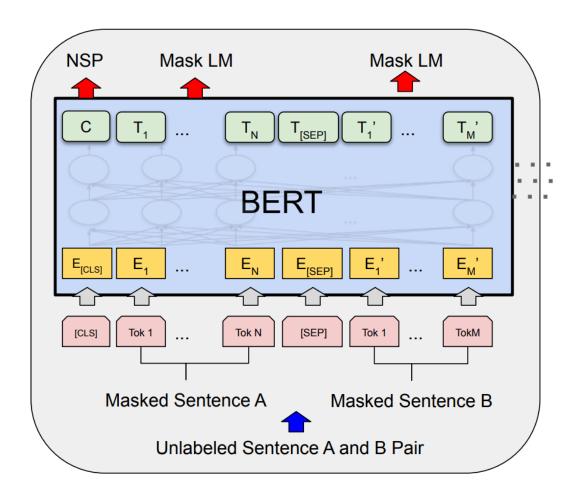
College of Information & Computer Sciences University of Massachusetts Amherst

Administrivia

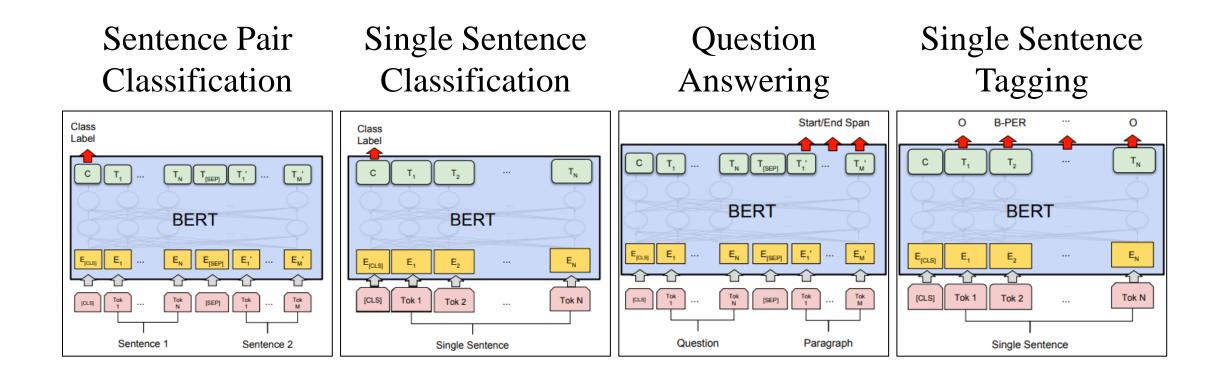
- Project Progress Report due Monday, 11/22
- Hugging Face (transformers) tutorial **tomorrow**, 11/19, @11am on Zoom
- HW4 will be released next week

BERT: <u>B</u>idirectional <u>Encoder</u> <u>**R**epresentations for <u>T</u>ransformers</u>

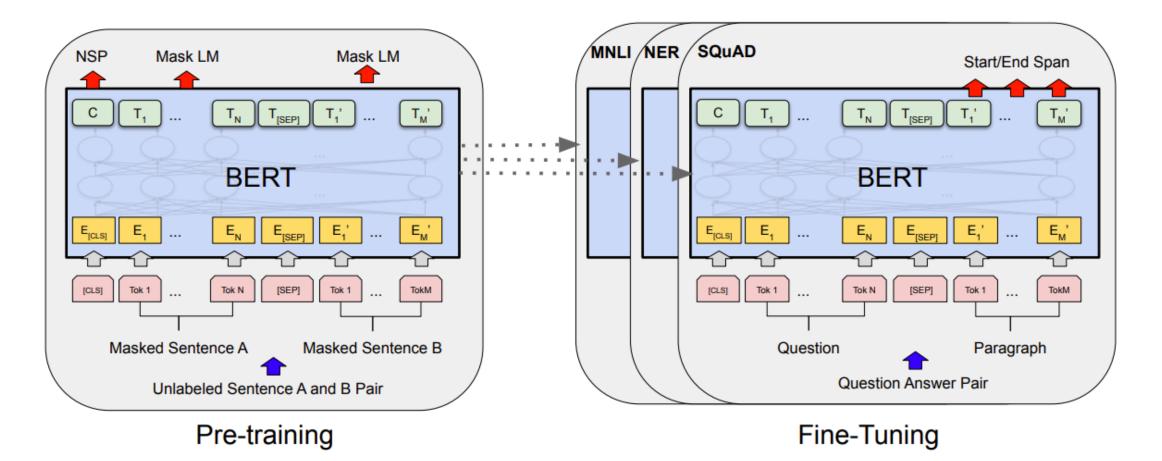
Pre-Training



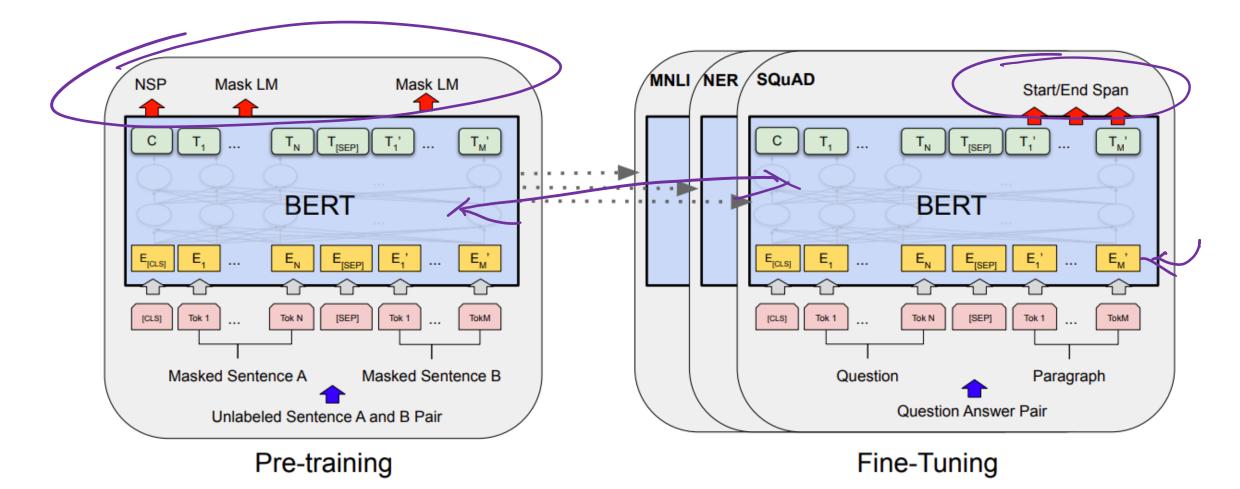
Fine-Tuning



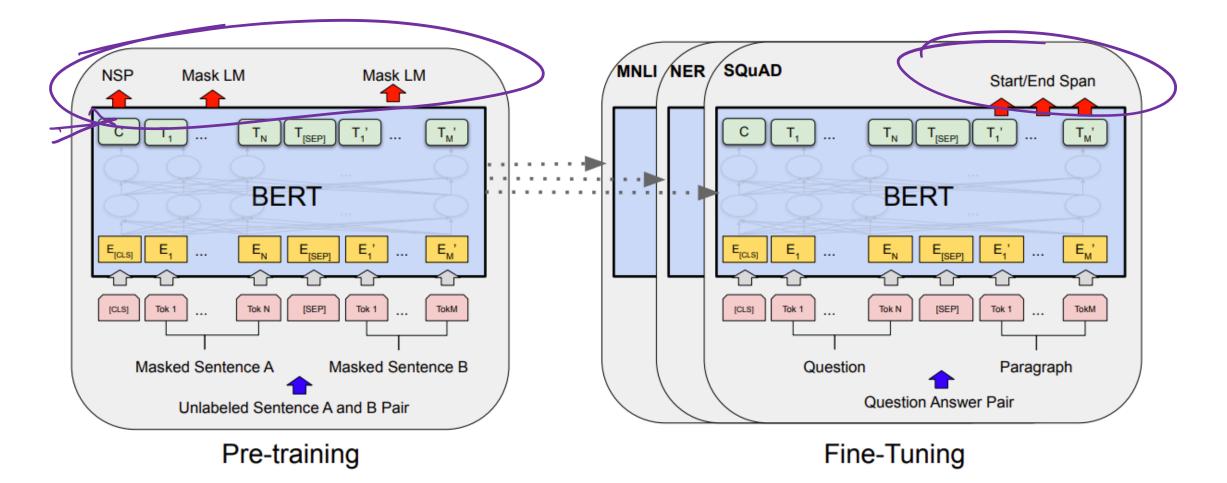
Pre-Training vs. Fine-Tuning



Same internal architecture



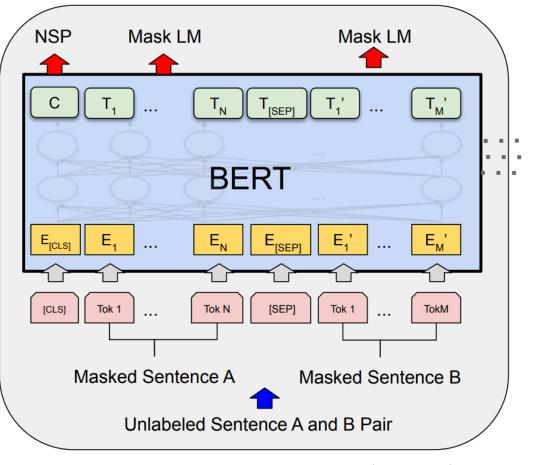
Different output layers & loss functions



Pre-Training BERT Tasks

(1) Masked Language Model

(2) Next Sentence Prediction



Masked Language Model Procedure

Example: my dog is <u>hairy</u>

- 80% of the time: Replace the word with the [MASK] token my dog is [MASK]
- 10% of the time: Replace the word with a random word my dog is apple
- 10% of the time: Keep the word unchanged my dog is hairy

Masked Language Model Procedure

Example: my dog is <u>hairy</u>

• 80% of the time: Replace the word with the [MASK] token Bidirectional language modeling my dog is [MASK]

10% of the time: Replace the word with a random word my dog is apple
10% of the time: Keep the word unchanged

my dog is hairy

Masked Language Model Procedure

Example: my dog is <u>hairy</u>

• 80% of the time: Replace the word with the [MASK] token Bidirectional language modeling my dog is [MASK]

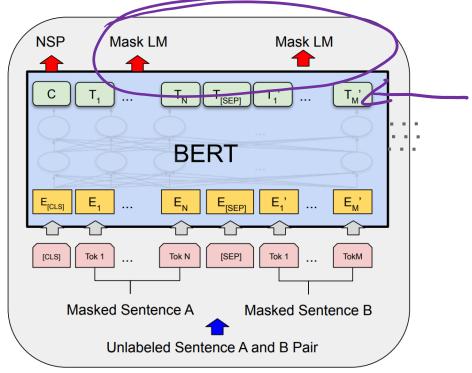
• 10% of the time: Replace the word with a random word

Mitigate mismatch between • 10% of the time: pre-training & fine-tuning

my dog is hairy

Pre-Training BERT: MLM

Idea: Predict vocab ID of masked tokens from final embeddings



1. Transform T_i into a vector with vocab_size dimensions

- 1. Transform T_i into a vector with vocab_size dimensions
- 2. Use softmax to obtain a probability distribution over the vocabulary

- 1. Transform T_i into a vector with vocab_size dimensions
- 2. Use softmax to obtain a probability distribution over the vocabulary
- 3. Use argmax to identify the most probable token

- 1. Transform T_i into a vector with vocab_size dimensions
- 2. Use softmax to obtain a probability distribution over the vocabulary
- 3. Use argmax to identify the most probable token

Loss Function: cross-entropy of distribution from 2 Only use masked tokens to calculate loss!

Cross-Entropy

True distribution p and estimating distribution q

$$H(p,q) = \sum_{x \in \mathcal{X}} p(x) \log q(x)$$

Cross-Entropy

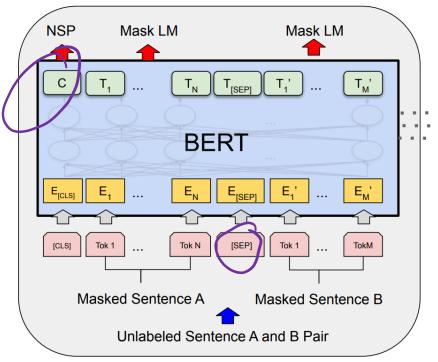
True distribution p and estimating distribution q

$$H(p,q) = \sum_{x \in \mathbf{X}} p(x) \log q(x)$$

$$H(p,q) = p(x_{true}) \log q(x_{true})$$
$$= \log q(x_{true})$$

Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the final embedding of the [CLS] token



1. Transform C into a vector with 2 dimensions

- 1. Transform C into a vector with 2 dimensions
- 2. Use softmax to obtain a probability distribution over the two classification labels

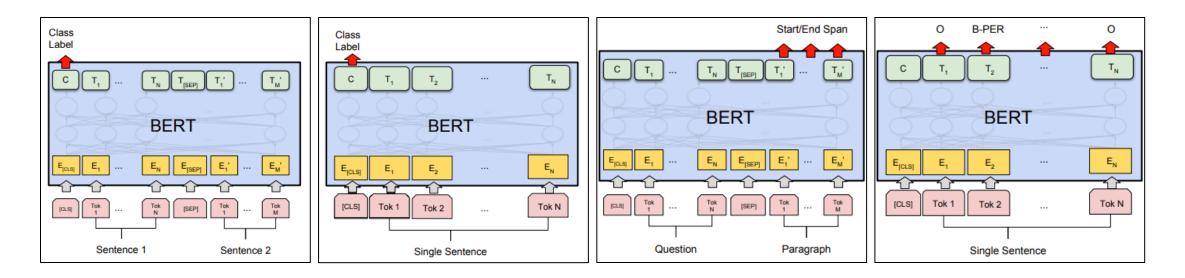
- 1. Transform C into a vector with 2 dimensions
- 2. Use softmax to obtain a probability distribution over the two classification labels
- 3. Predict the more probable label

- 1. Transform C into a vector with 2 dimensions
- 2. Use softmax to obtain a probability distribution over the two classification labels
- 3. Predict the more probable label

This is just a binary classification task!

Fine-Tuning

Use pre-trained model parameters for initialization Change pre-training output layers of BERT to suit task



Huge gains for many tasks! GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Huge gains for many tasks! GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

MNLI = Multi-genre Natural Language Inference

Premise	A woman selling bamboo sticks talking to two men on a loading dock.
Entailment	There are at least three people on a loading dock.
Neutral	A woman is selling bamboo sticks to help provide for her family.
Contradiction	A woman is not taking money for any of her sticks.

Devlin et al. 2019; Gururangan et al. 2017

Huge gains for many tasks! GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5L	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

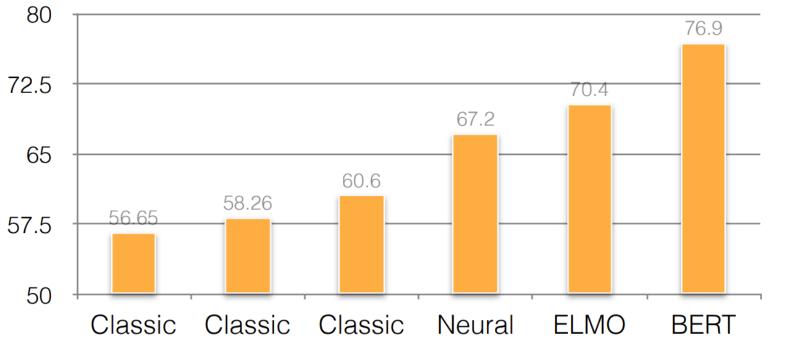
CoLA = Corpus of Linguistic Acceptability

	Morphological Violation	(a)	*Maryann should leaving.
Included	Syntactic Violation	(b)	*What did Bill buy potatoes and _?
	Semantic Violation	(c)	*Kim persuaded it to rain.
	Pragmatical Anomalies	(d)	*Bill fell off the ladder in an hour.
Excluded	Unavailable Meanings	(e)	*He _i loves John _i . (<i>intended</i> : John loves himself.)
Excluded	Prescriptive Rules	(f)	Prepositions are good to end sentences with.
	Nonce Words	(g)	*This train is arrivable.

Devlin et al. 2019; Warstadt et al. 2019

Huge gains for many tasks! Coreference Resolution

"I voted for Nader because he was most aligned with my values," she said.

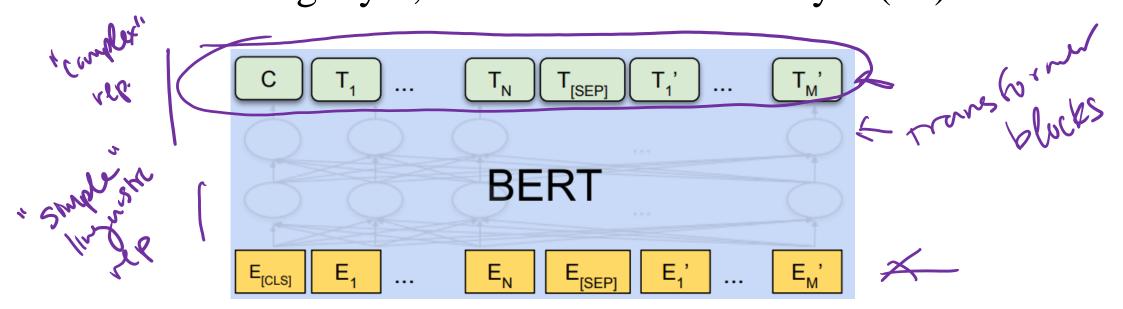


From slide of <u>Bamman (2021)</u>

Using BERT

BERT "Internal" Features

Internal token-level embeddings are 768 dimensions One for encoding layer, one for each hidden layer (12)



Building Initial Token Embeddings

The input token embeddings E_i are the sum of 3 embeddings encoding token, segment, and position information

Input	[CLS] my dog is cute [SEP] he likes	play ##ing [SEP]
Token Embeddings	E _[CLS] E _{my} E _{dog} E _{is} E _{cute} E _[SEP] E _{he} E _{likes}	E _{play} E _{##ing} E _[SEP]
Segment Embeddings	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline E_{B}^{\prime} & E_{B}^{\prime} & E_{B}^{\prime} \end{array}$
	+ + + + + + +	+ + +
Position Embeddings	$E_0 E_1 E_2 E_3 E_4 E_5 E_6 E_7$	E ₈ E ₉ E ₁₀

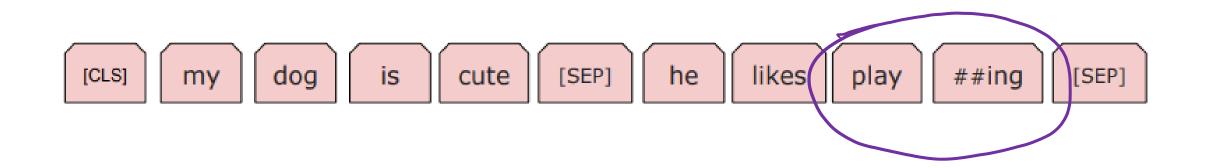
Building Initial Token Embeddings

The input token embeddings E_i are the sum of 3 embeddings encoding token, segment, and position information

Input	[CLS] my dog is cute [SEP] he likes play ##ing [SEP]
Token Embeddings	These embeddings are trained + +
Segment Embeddings	jointly with the rest of the model! $E_B = E_B$
	+ + + + + + + + + +
Position Embeddings	$ \begin{bmatrix} E_0 & E_1 & E_2 & E_3 & E_4 & E_5 & E_6 & E_7 & E_8 & E_9 & E_{10} \end{bmatrix} $

BERT (Sub)Tokens

BERT tokens do **not** strictly correspond to word tokens



Subword-Based Tokenization

the dog fetched the stick

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Subword-Based Tokenization

the dog fetched the stick

Word-Based: the, dog, fetched, the, stick

Token-Based: the, dog, fetch, ##ed, the, stick

Character-Based: t, h, e, _, d, o, g, _, f, e, t, c, h, e, d, _, t, h, e, _, s, t, i, c, k

Class Activity

colab.research.google.com/drive/1v3iustM3huxMVSItknowzWGwdrQpZoco

WordPiece

Goal: Given a training corpus and number of desired tokens **D**, select **D** wordpieces (i.e., subtokens) so that the training corpus is minimally segmented

<u>Wu et al. 2016</u>

WordPiece

Goal: Given a training corpus and number of desired tokens **D**, select **D** wordpieces (i.e., subtokens) so that the training corpus is minimally segmented

Top-Down: Break the starting vocabulary into smaller components until there are only **D**

<u>Wu et al. 2016</u>

Alternative: Byte Pair Encoding (BPE)

Used by GPT-2 and RoBERTa

Goal: Using a training corpus build a set of **D** subtokens to tokenized the training corpus

Sennrich et al. 2016

Alternative: Byte Pair Encoding (BPE)

Initial: The symbol vocabulary is the set of characters in the training corpus.

Do: For the most frequent 2-symbol sequence (A, B) in the training corpus, create a new symbol AB and replace all instances of with (A, B) with AB.

End: When there are D symbols.

After BERT: RoBERTa

Same BERT architecture, but with different pre-training

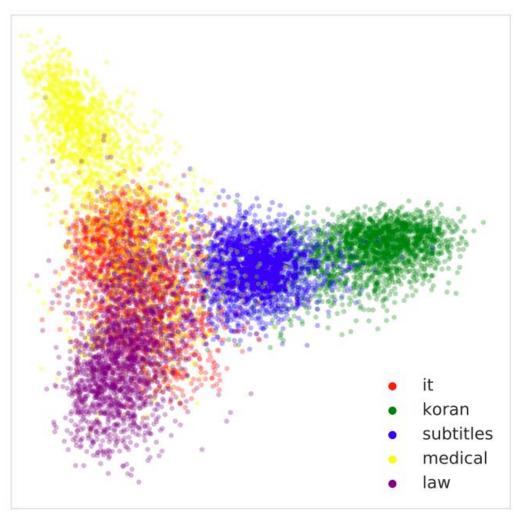
- Drop the Next Sentence Prediction pre-training task
- Use a BPE-based subtokenization method
- Pre-train with more data for a longer duration

After BERT: RoBERTa

Same BERT architecture, but with different pre-training

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERTLARGE						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
XLNet _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

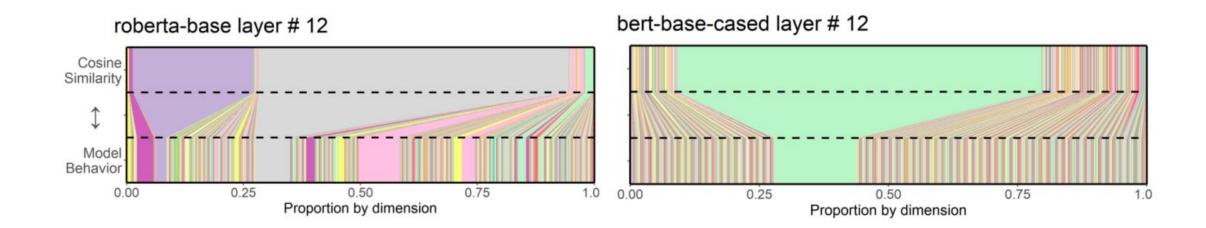
BERT representations reflect domain



Aharoni & Goldberg 2020

Trouble with raw embeddings

A few dimensions will dominate similarity measures such as cosine similarity and Euclidean distance



<u>Timkey & van Schijndel 2021</u>