
Neural networks in NLP

CS 490A, Fall 2021

https://people.cs.umass.edu/~brenocon/cs490a_f21/

Laure Thompson and Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

some slides adapted from Mohit Iyyer, Jordan Boyd-Graber,
Richard Socher, Jacob Eisenstein (INLP textbook)

https://people.cs.umass.edu/~brenocon/cs490a_f21/

Announcements
• 10/28 embedding demo: download links

updated
• To come: Exercise 10 to just play around with

embeddings in the same way
• Thank you for scheduling your MANDATORY :)

project meeting! Don't lose points on this!
• Project proposals makeups due tomorrow

• Midterm:
• In class, next Tuesday
• For accommodations, alternative proctoring, or

scheduling issues, let us know ASAP
• Midterm review questions to be posted (show)

2

Neural Networks in NLP

• Motivations:
• Word sparsity => denser word representations
• Nonlinearity

• Models
• BoE / Deep Averaging

• Learning
• Backprop
• Dropout

3

The Second Wave: NNs in NLP
• % of ~ACL paper titles with “connectionist/connectionism”,

“parallel distributed”, “neural network”, “deep learning”
• https://www.aclweb.org/anthology/

0

2

4

6

1980 2000 2020
year

pe
rc
_n
n

https://www.aclweb.org/anthology/

NN Text Classification

• Goals:
• Avoid feature engineering
• Generalize beyond individual words
• Compose meaning from context

• Now: we have several general model
architectures (+pretraining) that work well for
many different datasets (and tasks!)

• Less clear: why they work and what they're
doing

5

Word sparsity
• Alternate view of Bag-of-Words classifiers:

every word has a “one-hot” representation.
• Represent each word as a vector of zeros with a

single 1 identifying the index of the word
• Doc BOW x = average of all words’ vectors

6

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues
of representing a
word this way?

Word embeddings
• Today: word embeddings are the first “lookup” layer

in an NN. Every word in vocabulary has a vector —
these are model parameters.

king =
[0.23, 1.3, -0.3, 0.43]

composing embeddings
• neural networks compose word embeddings into

vectors for phrases, sentences, and documents

 neural
network () =

really good booka

what is deep learning?

(input) = outputf

what is deep learning?

output

input

Neural Network

12

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

Activation

f (z)⌘ 1

1+exp(�z)

pass through

nonlinear sigmoid

| UMD Multilayer Networks | 2 / 13

13

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

NN: kind of like several intermediate logregs

14

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

NN: kind of like several intermediate logregs

15

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

NN: kind of like several intermediate logregs

a.k.a. feedforward network (see INLP on terminology)

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

hn = f(Whn−1 + b)

Nonlinear activations
• “Squash functions”!

18

50 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

where the function � is now applied elementwise to the vector of inner products,

�(⇥(x!z)x) = [�(✓(x!z)
1 · x),�(✓(x!z)

2 · x), . . . ,�(✓(x!z)
Kz

· x)]>. [3.8]

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,
through a“hidden layer” z. This is a feedforward neural network.2

3.2 Designing neural networks

There several ways to generalize the feedforward neural network.

3.2.1 Activation functions

If the hidden layer is viewed as a set of latent features, then the sigmoid function in Equa-
tion 3.9 represents the extent to which each of these features is “activated” by a given
input. However, the hidden layer can be regarded more generally as a nonlinear trans-
formation of the input. This opens the door to many other activation functions, some of
which are shown in Figure 3.2. At the moment, the choice of activation functions is more
art than science, but a few points can be made about the most popular varieties:

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in the previous chapter.

Jacob Eisenstein. Draft of November 13, 2018.

Better name: non-linearity

Ñ Logistic / Sigmoid

f (x) =
1

1+e�x
(1)

Ñ tanh

f (x) = tanh(x) =
2

1+e�2x
�1

(2)

Ñ ReLU

f (x) =

⇢
0 for x < 0

x for x � 0
(3)

Ñ SoftPlus: f (x) = ln(1+ex)

| UMD Multilayer Networks | 5 / 13

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

No! You can just compile all of the layers into a single
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

Dracula is a really good book!

neural
network

Positive

softmax function
• let’s say I have 3 classes (e.g., positive, neutral,

negative)
• use multiclass logreg with “cross product” features

between input vector x and 3 output classes. for every
class c, i have an associated weight vector βc , then

22

P(y = c |x) =
eβcx

∑3
k=1 eβkx

23

softmax(x) =
ex

∑j exj

x is a vector
xj is dimension j of x

each dimension j of the softmaxed output
represents the probability of class j

softmax function

“bag of embeddings”

really good book

predict Positive

a… …

av =
nX

i=1

ci
n

affine transformation

c1 c2 c3 c4

Iyyer et al., ACL 2015

p(y = c | x) = exp(W (av))
PK

k=1 exp(W (av))k

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

Word embeddings
• Do we need pretrained word embeddings at all?

• With little labeled data: use pretrained embeddings

• With lots of labeled data: just learn embeddings directly for
your task!

• Think of last week's word embedding models as training an
NN-like model (matrix factorization) for a language model-like
task (predicting nearby words)

• (Future: in BERT/ELMO, use a pretrained full NN, not just the
word embeddings matrix)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model
parameters (i.e.,

weights)?

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

chain rule!!!

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ???

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

L = cross-entropy(out, ground-truth)

backpropagation
• use the chain rule to compute partial

derivatives w/ respect to each parameter
• trick: re-use derivatives computed for higher

layers to compute derivatives for lower layers!

33

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

Rumelhart et al., 1986

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization

def __init__(self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300):

super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward

def forward(self, batch, probs=False):
text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
Take the mean embedding. Since padding results
in zeros its safe to sum and divide by length
encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

Compute the network score predictions
logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute
gradients by hand!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Stochastic gradient descent
for parameter learning

• Neural net objective is non-convex. How to learn the parameters?

• SGD: iterate many times,

• Take sample of the labeled data

• Calculate gradient. Update params: step in its direction

• (Adam/Adagrad SGD: with some adaptation based on recent gradients)

• No guarantees on what it learns, and in practical settings doesn't exactly
converge to a mode. But often gets to good solutions (!)

• Best way to check: At each epoch (pass through the training dataset), evaluate
current model on development set. If model is getting a lot worse, stop.

How to control overfitting?
Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

• Most popular for non-NN logreg: L2 regularization (or similar)

• Most popular for neural networks

• Early stopping

• Dropout (next slide)

Dropout for NNs

40

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

randomly set p% of neurons to 0 in the forward pass

Why?

41

randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

X
X

X

p(cat)

A few other tricks
• Training can be unstable! Therefore some

tricks.
• Initialization — random small but reasonable

values can help.
• Layer normalization (very important for some

recent architectures)
• Big, robust open-source libraries to let you

computation graphs, then run backprop for
you

• PyTorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP…)

42

NNs in NLP
• Easy to experiment with different

architectures - lots of research
• Today: averaging & deep averaging
• Others: convolutional NNs, recurrent NNs (incl.

LSTMs), ...
• After midterm: self-attention "Transformers"

• Very useful: Pretrained NN language models
(similar to pretraining word embeddings),
applied to any task

• "BERT" = Pretrained Transformers

43

