Neural networks in NLP

CS 490A, Fall 2021

https://people.cs.umass.edu/~brenocon/cs490a {21/

Laure Thompson and Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

some slides adapted from Mohit lyyer, Jordan Boyd-Graber,
Richard Socher, Jacob Eisenstein (INLP textbook)

https://people.cs.umass.edu/~brenocon/cs490a_f21/

Announcements

e 10/28 embedding demo: download links
updated

 Jo come: Exercise 10 to just play around with

em
e [han

peddings in t

< you for sc

ne same way

neduling your MANDATORY :)

project meeting! Don't lose points on this!
* Project proposals makeups due tomorrow

e Midterm:

* [|n class, next Tuesday

 [or accommodations, alternative proctoring, or
scheduling issues, let us know ASAP

 Midterm review questions to be posted (show)

2

Neural Networks in NLP

e Motivations:
 \Word sparsity => denser word representations
* Nonlinearity
e Models
 BoE / Deep Averaging
| earning
e Backprop
 Dropout

The Second Wave: NNs in NLP

e 9% of ~ACL paper titles with “connectionist/connectionism”,
“parallel distributed”, “neural network”, “deep learning”

e https://www.aclweb.org/anthology/

1980 2000 2020
year

https://www.aclweb.org/anthology/

NN Text Classification

o (Goals:
e Avoid feature engineering
e (Generalize beyond individual words
e (Compose meaning from context

e Now: we

drC
Ma

Nitectu

nave severa

res (+pretrai
Ny different datasets (and tasks!)

general moo

ning) t

el

nat wo

'k well for

® | ess clear: why they work and what they're
doing

® Alternate view of

Word sparsity

Bag-of-Words classifiers:

every word has a “one-hot” representation.

e Represent each word as a vector of zeros with a
single 1 identifying the index of the word

® DocC

BOW x = average O

vocabulary

- all words’ vectors

; movie = <0, 0, 0, O, 1, O>

hate fil
love
the

movie

film

m =<0,0,0,0,0, 1>

what are the issues
of representing a
word this way?

Word embeddings

* Joday: word embeddings are the first “lookup” layer
in an NN. Every word in vocabulary has a vector —

these are model parameters.

man
o
" . woman
king X ‘
‘e
gueen
S
Male-Female

walking

King =
[0.23, 1.3, -0.3, 0.43]

walked
@
swam
O —
swimming
Verb tense

Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural a really good book

network (§ 1 B H)=0

what is deep learning”

f (input) = output

what is deep learning”

iInput

v

Neural Network

output

Logistic Regression by Another Name: Map inputs to output

Input

Vector X ..

- Xd

> hw,b(x)

Activation

.

f(2)

1+ exp(—2)

pass through
nonlinear siagmoid

NN: Kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

NN: Kind of like several intermediate logregs

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

p—
hw,b(x)

Layer L,

NN: Kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

|

hy b(X)

|

Layer L,

Layer L,

what is deep learning”

input

nonlinear transformation

Neural Network

what is deep learning”

input

nonlinear transformation

Nonlinear activations

e “Sqguash functions”!

values

/. szesscs
7
’ —— sigmoid

tanh
- == RelLU

= |ogistic / Sigmoid

1
f(x) = 1
(x) e (1)
= tanh
f(x) = tanh(x) = — = —1
X)=1Tanni{x)=
14 e2x
(2)
s RelLU
0O for x<0
f(x)_{x for x>0

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W, f(Wx))) = Wx

Dracula is a really good book!

neural
network

Positive

softmax function

® |ct’'s say | have 3 classes (e.qg., positive, neutral,
negative)

® use multiclass logreg with “cross product” features
between input vector x and 3 output classes. for every
class c, i have an associated weight vector B¢, then

P(y = c|x) =

22

softmax function

ex
x.
T

X 1S a vector

softmax(x) =

X IS dimension j of X

each dimension j of the softmaxed output
represents the probabillity of class

23

“bag of embeddings”

predict Positive affine transformation

! \

_ exp(W(av))
S exp(W (av))s

a really good ook
C1 C2 C3 Cs

lyyer et al,ACL 2015

deep averaging networks

out = softmax(W; - z,)

I I 22:f(W2'21)
nonlinear function

l A

21 — 1 - Qv

X

I _affine transformation

&7
ayv = _
1=1

/7\\

a really good ook
CH Co2 C3 C4

Word embeddings

* Do we need pretrained word embeddings at all?
* With little labeled data: use pretrained emlbeddings

* With lots of labeled data: just learn embeddings directly for
your task!

* Think of last week's word embedding models as training an
NN-like model (matrix factorization) for a language model-like
task (predicting nearby words)

e (Future: in BERT/ELMO, use a pretrained full NN, not just the
word embeddings matrix)

deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W3 2)

chain rule!!!
I 2o = f(Wa - 21)

.
I

/7\'\”

a really good ook
C1 Co C3 C4

oL JdL oJout dz, 0z dav
oc; odout 0z, 0z, dav oc;

ary = _
n

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL

=979
oW,

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL dL. 0out (322

oW, dout dz, oW,

a really good ook
C1 Co C3 C4

packpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL B ol. oout 0Z2 0Z1 oav
oc; 0out 0z, 0z, dav o,

oL oL oout oz,

oW, oout 9z, oW,

33 Rumelhart et al., 1 986

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book

d

deep learning frameworks make
building NNs super easy!

out = softmax(W, -z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
Take the mean embedding. Since padding results
1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really good book return logits

n

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :

self. model.train ()
. z1 = f(W1 - av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’ label’])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
batch loss = criterion (out,
av = —7’ batch[’label’])

batch loss.backward ()

1=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!

Stochastic gradient descent
for parameter learning

* Neural net objective is non-convex. How to learn the parameters?
e SGD: iterate many times,
» Take sample of the labeled data

e (Calculate gradient. Update params: step in its direction

 (Adam/Adagrad SGD: with some adaptation based on recent gradients)

* NO guarantees on what it learns, and in practical settings doesn't exactly
converge to a mode. But often gets to good solutions (!)

« Best way to check: At each epoch (pass through the training dataset), evaluate
current model on development set. If model is getting a lot worse, stop.

How to control overfitting”

* Most popular for non-NN logreg: L2 regularization (or similar)
* Most popular for neural networks

e Early stopping

e Dropout (next slide)

overfitting

model power

[Srivastava et al., 2014]

(b) After applying dropout.

40

Dropout for NNs

of neurons to O in the forward pass

%

Net

0
AT
No7AN

_ s“\

%N ».»‘5.?'

XN

N\ X X .,.51 4\‘
(3 NI
AN

randomly set p

a) Standard Neural

SAL A7
XL XL
A,
.‘\q .,? o\‘e .,? Q
/XKD /XKD
(‘% now%/‘&nﬁ,o/'

Why*

randomly set p% of neurons to O in the forward pass

— gS g tail -

—— (35 ClAWS /

— | iSChievous 00K

4]

A few other tricks

® [raining can be unstable! Therefore some
tricks.

e |nitialization — random small but reasonable
values can help.

e | ayer normalization (very important for some
recent architectures)
® Big, robust open-source libraries to let you
computation graphs, then run lbackprop for
you

e PyJlorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP...)

42

NNs in NLP

® [asy to experiment with different
architectures - lots of research

e Joday: averaging & deep averaging
e (Others: convolutional NNs, recurrent NNs (incl.

LSTMS), .
term: sel

o After mio

® \/ery usefu

. Pretra

(similar to pretraini
applied to any task

o "BERT" = Pretrained Transformers

Ng WOrC

43

~attention "Transformers”
iIned NN language models

embeddings),

