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Announcements

e 10/28 embedding demo: download links
updated
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Neural Networks in NLP

e Motivations:
 \Word sparsity => denser word representations
* Nonlinearity
e Models
 BoE / Deep Averaging
| earning
e Backprop
 Dropout




The Second Wave: NNs in NLP

e 9% of ~ACL paper titles with “connectionist/connectionism”,
“parallel distributed”, “neural network”, “deep learning”

e https://www.aclweb.org/anthology/

1980 2000 2020
year


https://www.aclweb.org/anthology/

NN Text Classification

o (Goals:
e Avoid feature engineering
e (Generalize beyond individual words
e (Compose meaning from context

e Now: we
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® Alternate view of

Word sparsity

Bag-of-Words classifiers:

every word has a “one-hot” representation.

e Represent each word as a vector of zeros with a
single 1 identifying the index of the word

® DocC
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- all words’ vectors

; movie = <0, 0, 0, O, 1, O>

hate fil
love
the

movie

film
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what are the issues
of representing a
word this way?



Word embeddings

* Joday: word embeddings are the first “lookup” layer
in an NN. Every word in vocabulary has a vector —

these are model parameters.
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composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural a really good book

network ( § 1 B H)=0







what is deep learning”

f (input) = output



what is deep learning”
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Logistic Regression by Another Name: Map inputs to output

Input

Vector X ..
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NN: Kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!




NN: Kind of like several intermediate logregs

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

p—
hw,b(x)

Layer L,




NN: Kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)
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what is deep learning”

input

nonlinear transformation

Neural Network




what is deep learning”

input
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Nonlinear activations

e “Sqguash functions”!
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IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??



IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W, f(Wx))) = Wx



Dracula is a really good book!

neural
network

Positive



softmax function

® |ct’'s say | have 3 classes (e.qg., positive, neutral,
negative)

® use multiclass logreg with “cross product” features
between input vector x and 3 output classes. for every
class c, i have an associated weight vector B¢, then

P(y = c|x) =

22



softmax function

ex
x.
T

X 1S a vector

softmax(x) =

X IS dimension j of X

each dimension j of the softmaxed output
represents the probabillity of class
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“bag of embeddings”

predict Positive affine transformation

! \
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deep averaging networks

out = softmax(W; - z,)
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nonlinear function
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Word embeddings

* Do we need pretrained word embeddings at all?
* With little labeled data: use pretrained emlbeddings

* With lots of labeled data: just learn embeddings directly for
your task!

* Think of last week's word embedding models as training an
NN-like model (matrix factorization) for a language model-like
task (predicting nearby words)

e (Future: in BERT/ELMO, use a pretrained full NN, not just the
word embeddings matrix)



deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W3 2)

chain rule!!!
I 2o = f(Wa - 21)
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)
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oW, dout dz, oW,
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packpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!
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a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book



d

deep learning frameworks make
building NNs super easy!

out = softmax(W, -z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’ ][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
# Take the mean embedding. Since padding results
# 1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really  good  book return logits

n



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :

self. model.train ()
. z1 = f(W1 - av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’ label’ ])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
batch loss = criterion (out,
av = —7’ batch[’label’])

batch loss.backward ()

1=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!



Stochastic gradient descent
for parameter learning

* Neural net objective is non-convex. How to learn the parameters?
e SGD: iterate many times,
» Take sample of the labeled data

e (Calculate gradient. Update params: step in its direction

 (Adam/Adagrad SGD: with some adaptation based on recent gradients)

* NO guarantees on what it learns, and in practical settings doesn't exactly
converge to a mode. But often gets to good solutions (!)

« Best way to check: At each epoch (pass through the training dataset), evaluate
current model on development set. If model is getting a lot worse, stop.



How to control overfitting”

* Most popular for non-NN logreg: L2 regularization (or similar)
* Most popular for neural networks

e Early stopping

e Dropout (next slide)

overfitting

model power



[Srivastava et al., 2014]

(b) After applying dropout.
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Dropout for NNs

of neurons to O in the forward pass
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Why*

randomly set p% of neurons to O in the forward pass
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A few other tricks

® [raining can be unstable! Therefore some
tricks.

e |nitialization — random small but reasonable
values can help.

e | ayer normalization (very important for some
recent architectures)
® Big, robust open-source libraries to let you
computation graphs, then run lbackprop for
you

e PyJlorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP...)

42



NNs in NLP

® [asy to experiment with different
architectures - lots of research

e Joday: averaging & deep averaging
e (Others: convolutional NNs, recurrent NNs (incl.

LSTMS), .
term: sel

o After mio
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o "BERT" = Pretrained Transformers
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~attention "Transformers”
iIned NN language models

embeddings),



