Word Embeddings

CS 490A, Fall 2021
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs490a f21

Brendan O'Connor \& Laure Thompson
College of Information \& Computer Sciences
University of Massachusetts Amherst

Administrivia

- HW3 due this Friday, 10/29
- Project Proposal Feedback coming soon!
- Keep a lookout for Project Proposal Meeting sign-ups!
- Midterm Review: 11/4
- In-Class Midterm: 11/9

What is a pawpaw?

I. Look it up in a dictionary

https://www.merriam-webster.com/
https://www.oed.com/
https://en.wiktionary.org/

pawpaw noun

 ΘSave Word
paw•paw
variants: or less commonly papaw

Definition of pawpaw

1 \pə- ро̇ \: PAPAYA

2 \ 'pä-(.) pȯ (4i), 'pó- \: a North American tree (Asimina triloba) of the custard-apple family with purple flowers and an edible green-skinned fruit also : its fruit

II. Look it at how its used

"Pawpaw, Most Neglected American Fruit." - NYTimes $\underline{1922}$
"Pawpaw Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" - NYTimes 1942
"The pawpaw is also pollinated by flies and other insects rather than by honeybees..."- NYTimes $\underline{2020}$
"Many people also cook with ripe pawpaws, making bread, beer, ice cream, or this pawpaw pudding..." - NYTimes $\underline{2020}$

II. Look it at how its used

"Pawpaw, Most Neglected American Fruit." - NYTimes $\underline{1922}$
"Pawpaw Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" - NYTimes 1942
"The pawpaw is also pollinated by flies and other insects rather than by honeybees..."- NYTimes $\underline{2020}$
"Many people also cook with ripe pawpaws, making bread, beer, ice cream, or this pawpaw pudding..." - NYTimes $\underline{2020}$

Word Relations

Synonyms

- couch / sofa
- oculist / eye-doctor
- car / automobile
- water / $\mathrm{H}_{2} \mathrm{O}$
- draft / draught

Antonyms

- yes / no
- dark / light
- hot / cold
- up / down
- clip / clip

Word Relations

Similarity

- cat / dog
- cardiologist / pulmonologist
- car / bus
- sheep / goat
- glass / mug

Relatedness

- coffee / cup
- waiter / menu
- farm / cow
- house / roof
- theater / actor

Quantifying Similarity

Ask humans how similar two words are on a scale of 1-10

Word 1	Word 2	SimLex-999
area	region	9.47
horse	mare	8.33
water	ice	6.7
hill	cliff	4.28
absence	presence	0.4
princess	island	0.3

Task Design is Difficult

Similarity and Relatedness do not capture the same relations

Word 1	Word 2	SimLex-999	WordSim-353
coast	shore	8.83	9.10
clothes	closet	3.27	8.00

...but what about computers?

Word Embeddings

Represent each word as a vector

On Vectors:

- A vector is a list of numbers
- A vector can also be considered a point in a k-dimensional space

Capturing Word Similarity

Operationalize word similarity by computationally comparing vectors

Closer vectors represent more similar words

More distant vectors represent less similar words

Scott BaroooOooOOooo0Oooo @sbarolo • Jul 7
\#Fruitbracket Match \#36: PAPAYA vs, KIWIFRUIT
Papaya 30.6%

Kiwifruit
376 votes - Final results
Q 1
てป 4

0
さ

Show this thread
Scott BaroooOooOOooooOooo @sbarolo • Jul 5
Big Pawpaw is coming out swinging
Q) Jeff L'épouvantail @letourjeff • Jul 5
twitter.com/sbarolo/status...

Study word use over time

Hamilton et al. 2016

One-Hot Vectors

Each word is represented by a vector with a 1 in the word's index in the vocabulary and 0 's elsewhere

Term	Vector
i	$<1,0,0,0,0,0\rangle$
hate	$<0,1,0,0,0,0\rangle$
love	$<0,0,1,0,0,0\rangle$
the	$<0,0,0,1,0,0\rangle$
movie	$<0,0,0,0,1,0\rangle$
film	$<0,0,0,0,0,1>$

Q: What are some issues with these representations?

Q: What are some issues with these representations?
(1) Vocabulmies are lame!
(2) Thence all equidistant

Distributional Semantics

"You shall know a word by the company it keeps!" - Firth (1957)

Intuitions: Harris (1954)
"If A and B have almost identical environments except chiefly sentences which contain both, we say they are synonyms: oculist and eye-doctor."
petrol, gas

Build vectors based on context

Q: What are some issues with these representations?

Q : What are some issues with these representations?

Still size of vocab!
These are sparse

Trouble with raw frequency

Words occur at different frequencies irrespective of context

So, raw frequency does not necessarily correspond to significant, informative use.

$$
\begin{aligned}
& \text { peach, fruit } \longrightarrow \text { relationship } \\
& \text { the, Fruit } \\
& \text { the /peach }
\end{aligned}
$$

Move away from raw frequency

Term-Document Matrix

Apply tf-idf weighting

$$
=\frac{\text { term frequency }}{\text { document frequency }}
$$

ff: raw count

$$
\text { "freq" } \frac{\text { raw court }}{\text { tons }}
$$

Word-Context Matrix

Use PPMI (Positive Pointwise Mutual Information)

$$
=\max \left(P M I\left(w_{a}, w_{b}\right), 0\right)
$$

$$
=\max \left(\log _{2} \frac{P\left(w_{a}, w_{b}\right)}{P\left(w_{a}\right) P\left(w_{b}\right)}, 0\right)
$$

Move to smaller, dense embeddings

Use matrix factorization to build a more compact representation
Matrix factorization decomposes a matrix into the product of several (smaller) matrices
E.g., Singular Value Decomposition (SVD)

Latent Semantic Analysis (LSA)

Newer, neural models also use matrix factorization
E.g., GloVE and SGNS
word2vec

Neural Word Embeddings

Neural Word Embeddings

Skip-Gram with Negative Sampling (SGNS)

The brown fox jumps over the lazy dog.

SGNS: Skip-Gram Model

The brown fox jumps over the lazy dog.

SGNS: Skip-Gram Model

The brown fox jumps over the lazy dog.
Context Window Size = 2

SGNS: Skip-Gram Model

The brown fox jumps over the lazy dog.
 Context Window Size = 2

jumps \rightarrow \{ brown, fox, over, the $\}$
δ^{2}
cares

SGNS: Negative Sampling

Co-occurrence jumps,fox:

SGNS: Negative Sampling

Co-occurrence jumps, fox:

How do we compare vectors?

- Similarity measurements
- Larger values \rightarrow similar vectors \rightarrow similar words
- Smaller values \rightarrow dissimilar vectors \rightarrow dissimilar words
- Distance / dissimilarity measurements
- Note: distance metric requires triangle inequality
- Larger values \rightarrow dissimilar vectors \rightarrow dissimilar words
- Smaller values \rightarrow similar vectors \rightarrow similar words

Euclidean Distance

$$
d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

Issue: Vector length depends on frequency. More frequent words will have longer vectors.

Cosine Similarity

$$
s(x, y)=\cos \theta
$$

$s(x, y)=\frac{x \cdot y}{|x||y|}$

Only depends on vector angle

Range: [-1, 1]

Non-negative vectors \& cosine similarity

If all vectors have non-negative values, then their cosine similarity will be between 0 and 1

