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Useful features for a tagger

• Key sources of information:


• 1.  The word itself 

• 2.  Word-internal characters 

• 3.  Nearby words in a context window

• Context window features are used for ALL 
tagging tasks!

• Necessary to deal with lexical ambiguity
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POS Tagging: lexical ambiguity
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DRAFT
8.3 • PART-OF-SPEECH TAGGING 7

That can be a determiner (Does that flight serve dinner) or a complementizer
(I thought that your flight was earlier). The problem of POS-tagging is to resolveresolution
these ambiguities, choosing the proper tag for the context. Part-of-speech tagging is
thus one of the many disambiguation tasks in language processing.disambiguation

How hard is the tagging problem? And how common is tag ambiguity? Fig. 8.2
shows the answer for the Brown and WSJ corpora tagged using the 45-tag Penn
tagset. Most word types (80-86%) are unambiguous; that is, they have only a sin-
gle tag (Janet is always NNP, funniest JJS, and hesitantly RB). But the ambiguous
words, although accounting for only 14-15% of the vocablary, are some of the most
common words of English, and hence 55-67% of word tokens in running text are
ambiguous. Note the large differences across the two genres, especially in token
frequency. Tags in the WSJ corpus are less ambiguous, presumably because this
newspaper’s specific focus on financial news leads to a more limited distribution of
word usages than the more general texts combined into the Brown corpus.

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.2 The amount of tag ambiguity for word types in the Brown and WSJ corpora,
from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and
assume words are kept in their original case.

Some of the most ambiguous frequent words are that, back, down, put and set;
here are some examples of the 6 different parts-of-speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP about debt
I was twenty-one back/RB then

Still, even many of the ambiguous tokens are easy to disambiguate. This is
because the different tags associated with a word are not equally likely. For ex-
ample, a can be a determiner or the letter a (perhaps as part of an acronym or an
initial). But the determiner sense of a is much more likely. This idea suggests a
simplistic baseline algorithm for part of speech tagging: given an ambiguous word,
choose the tag which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

How good is this baseline? A standard way to measure the performance of part-
of-speech taggers is accuracy: the percentage of tags correctly labeled on a human-accuracy

labeled test set. One commonly used test set is sections 22-24 of the WSJ corpus. If
we train on the rest of the WSJ corpus and test on that test set, the most-frequent-tag
baseline achieves an accuracy of 92.34%.

By contrast, the state of the art in part-of-speech tagging on this dataset is around
97% tag accuracy, a performance that is achievable by a number of statistical algo-

Most words types are 
unambiguous ...

But not so for 
tokens!
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Can we just use a tag dictionary 
(one tag per word type)?

• Ambiguous wordtypes tend to be the common ones.


• I know that he is honest = IN  (relativizer)


• Yes, that play was nice = DT  (determiner)


• You can’t go that far = RB  (adverb)



POS Tagging: baseline
• Baseline: most frequent tag.  92.7% accuracy


• Simple baselines are very important to run!
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• Is this actually that high?


• I get 0.918 accuracy for token tagging


• ...but, 0.186 whole-sentence accuracy (!)

• Why so high?


• Many ambiguous words have a skewed distribution of 
tags


• Credit for easy things like punctuation, “the”, “a”, etc.



Word sense disambiguation
• Task: Choose a word’s sense in context


• Given KB and text: 
Want to tag spans in text with concept IDs


• Disambiguation problem


• “I saw the bank” => bank#1 or bank#2?


• “Michael Jordan was here” => ?
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• Many terms for this: concept tagging, entity linking, 
“wikification”, WSD



• Supervised setting: need ground-truth concept IDs 
for words in text


• Main approach: use contextual information to 
disambiguate.

6

Word sense disambiguation



Supervised%WSD%3:%Extract%feature%vectors
Intuition%from%Warren%Weaver%(1955):

“If&one&examines&the&words&in&a&book,&one&at&a&time&as&through&
an&opaque&mask&with&a&hole&in&it&one&word&wide,&then&it&is&
obviously&impossible&to&determine,&one&at&a&time,&the&meaning&
of&the&words…&
But&if&one&lengthens&the&slit&in&the&opaque&mask,&until&one&can&
see&not&only&the&central&word&in&question&but&also&say&N&words&
on&either&side,&then&if&N&is&large&enough&one&can&unambiguously&
decide&the&meaning&of&the&central&word…&
The&practical&question&is&:&``What&minimum&value&of&N&will,&at&
least&in&a&tolerable&fraction&of&cases,&lead&to&the&correct&choice&
of&meaning&for&the&central&word?”

[slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/


Two%kinds%of%features%in%the%vectors

• Collocational features&and&bagTofTwords%features
• Collocational
• Features&about&words&at&specific positions&near&target&word
• Often&limited&to&just&word&identity&and&POS

• BagTofTwords
• Features&about&words&that&occur&anywhere&in&the&window&(regardless&
of&position)
• Typically&limited&to&frequency&counts

[slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/


Examples

• Example&text&(WSJ):
An&electric&guitar&and&bass player&stand&off&to&
one&side&not&really&part&of&the&scene

• Assume&a&window&of&+/> 2&from&the&target

[slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/


Examples

• Example&text&(WSJ)
An&electric&guitar&and&bass player&stand&off&to&
one&side&not&really&part&of&the&scene,&

• Assume&a&window&of&+/> 2&from&the&target

[slide: SLP3]
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Collocational features

• Position>specific&information&about&the&words&and&
collocations&in&window

• guitar&and&bass player&stand

• word&1,2,3&grams&in&window&of&�3&is&common

10 CHAPTER 16 • COMPUTING WITH WORD SENSES

ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In ad-
dition, sense-tagged corpora have been built for the SENSEVAL all-word tasks. The
SENSEVAL-3 English all-words test data consisted of 2081 tagged content word to-
kens, from 5,000 total running words of English from the WSJ and Brown corpora
(Palmer et al., 2001).

The first step in supervised training is to extract features that are predictive of
word senses. The insight that underlies all modern algorithms for word sense disam-
biguation was famously first articulated by Weaver (1955) in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . . ] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . . ] The practical question is : “What minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

We first perform some processing on the sentence containing the window, typi-
cally including part-of-speech tagging, lemmatization , and, in some cases, syntactic
parsing to reveal headwords and dependency relations. Context features relevant to
the target word can then be extracted from this enriched input. A feature vectorfeature vector
consisting of numeric or nominal values encodes this linguistic information as an
input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts,
both of which we have seen previously in part-of-speech tagging: collocational fea-
tures and bag-of-words features. A collocation is a word or series of words in acollocation
position-specific relationship to a target word (i.e., exactly one word to the right, or
the two words starting 3 words to the left, and so on). Thus, collocational featurescollocational

features
encode information about specific positions located to the left or right of the target
word. Typical features extracted for these context words include the word itself, the
root form of the word, and the word’s part-of-speech. Such features are effective at
encoding local lexical and grammatical information that can often accurately isolate
a given sense.

For example consider the ambiguous word bass in the following WSJ sentence:

(16.17) An electric guitar and bass player stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right
and left of the target word, made up of the words themselves, their respective parts-
of-speech, and pairs of words, that is,

[wi�2,POSi�2,wi�1,POSi�1,wi+1,POSi+1,wi+2,POSi+2,wi�1
i�2,w

i+1
i ] (16.18)

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

High performing systems generally use POS tags and word collocations of length
1, 2, and 3 from a window of words 3 to the left and 3 to the right (Zhong and Ng,
2010).

The second type of feature consists of bag-of-words information about neigh-
boring words. A bag-of-words means an unordered set of words, with their exactbag-of-words
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[slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/


BagTofTwords%features

• “an&unordered&set&of&words”&– position&ignored
• Counts&of&words&occur&within&the&window.
• First&choose&a&vocabulary
• Then&count&how&often&each&of&those&terms&occurs&in&a&
given&window
• sometimes&just&a&binary&“indicator”&1&or&0

[slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/


• Supervised setting: need ground-truth concept IDs for words in text


• Contextual features


• Word immediately to left ... to right ...


• Word within 10 word window  (20 word window? entire document?)


• Features from matching a concept description, if your KB has one

• Michael Jeffrey Jordan (born February 17, 1963), also known by his initials, MJ,[1] is an American former professional 

basketball player. He is also a businessman, and principal owner and chairman of the Charlotte Hornets. Jordan 
played 15 seasons in the National Basketball Association (NBA) for theChicago Bulls and Washington Wizards.


• Overall (prior) sense frequency


• For WN, hard to beat Most Frequent Sense baseline (?!)


• For major real-world named entities: consider "Obama", "Trump"


• This task is also called "Entity Linking"
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Word sense disambiguation

https://en.wikipedia.org/wiki/Michael_Jordan#cite_note-1
https://en.wikipedia.org/wiki/Basketball
https://en.wikipedia.org/wiki/Businessperson
https://en.wikipedia.org/wiki/Charlotte_Hornets
https://en.wikipedia.org/wiki/National_Basketball_Association
https://en.wikipedia.org/wiki/Chicago_Bulls
https://en.wikipedia.org/wiki/Washington_Wizards


Named entity recognition

• Goal: for a fixed entity type inventory (e.g. PERSON, LOCATION, 
ORGANIZATION), identify all spans from a document


• Name structure typically defined as flat (is this good?)

14

Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL), pages 147–155,
Boulder, Colorado, June 2009. c�2009 Association for Computational Linguistics

Design Challenges and Misconceptions in Named Entity Recognition
⇤ † ‡

Lev Ratinov Dan Roth

Computer Science Department
University of Illinois

Urbana, IL 61801 USA
{ratinov2,danr}@uiuc.edu

Abstract

We analyze some of the fundamental design
challenges and misconceptions that underlie
the development of an efficient and robust
NER system. In particular, we address issues
such as the representation of text chunks, the
inference approach needed to combine local
NER decisions, the sources of prior knowl-
edge and how to use them within an NER
system. In the process of comparing several
solutions to these challenges we reach some
surprising conclusions, as well as develop an
NER system that achieves 90.8 F1 score on
the CoNLL-2003 NER shared task, the best
reported result for this dataset.

1 Introduction

Natural Language Processing applications are char-
acterized by making complex interdependent deci-
sions that require large amounts of prior knowledge.
In this paper we investigate one such application–
Named Entity Recognition (NER). Figure 1 illus-
trates the necessity of using prior knowledge and
non-local decisions in NER. In the absence of mixed
case information it is difficult to understand that

⇤ The system and the Webpages dataset are available at:
http://l2r.cs.uiuc.edu/⇠cogcomp/software.php

† This work was supported by NSF grant NSF SoD-HCER-
0613885, by MIAS, a DHS-IDS Center for Multimodal In-
formation Access and Synthesis at UIUC and by an NDIIPP
project from the National Library of Congress.

‡ We thank Nicholas Rizzolo for the baseline LBJ NER
system, Xavier Carreras for suggesting the word class models,
and multiple reviewers for insightful comments.

SOCCER - [PER BLINKER] BAN LIFTED .
[LOC LONDON] 1996-12-06 [MISC Dutch] forward
[PER Reggie Blinker] had his indefinite suspension
lifted by [ORG FIFA] on Friday and was set to make
his [ORG Sheffield Wednesday] comeback against
[ORG Liverpool] on Saturday . [PER Blinker] missed
his club’s last two games after [ORG FIFA] slapped a
worldwide ban on him for appearing to sign contracts for
both [ORG Wednesday] and [ORG Udinese] while he was
playing for [ORG Feyenoord].

Figure 1: Example illustrating challenges in NER.

“BLINKER” is a person. Likewise, it is not obvi-
ous that the last mention of “Wednesday” is an orga-
nization (in fact, the first mention of “Wednesday”
can also be understood as a “comeback” which hap-
pens on Wednesday). An NER system could take ad-
vantage of the fact that “blinker” is also mentioned
later in the text as the easily identifiable “Reggie
Blinker”. It is also useful to know that Udinese
is a soccer club (an entry about this club appears
in Wikipedia), and the expression “both Wednesday
and Udinese” implies that “Wednesday” and “Udi-
nese” should be assigned the same label.

The above discussion focuses on the need for ex-
ternal knowledge resources (for example, that Udi-
nese can be a soccer club) and the need for non-
local features to leverage the multiple occurrences
of named entities in the text. While these two needs
have motivated some of the research in NER in
the last decade, several other fundamental decisions
must be made. These include: what model to use for
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https://www.aclweb.org/anthology/W09-1119/


BIO tagging

• Can we map span identification to token-level 
tagging?

15
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BIO tagging
Barack Obama Michelle Obama were ...Goal: represent 

two spans

NAME vs O

doesn't work

[slide made after lecture]

N N N N O

BIO B-N I-N B-N I-N O

make cross-product of "B"egin and "I"nside against each class type:

O, B-PER, I-PER, B-LOC,I-LOC, ...
... then spans can easily be extracted from tagger output.



Features for NER/POS

• Word-based features


• Word itself


• Word shape


• Contextual variants: versions of these at position t-1, t-2, t-3 … t+1, 
t+2, t+3 …


• External lexical knowledge


• Gazetteer features: Does word/phrase occur in a list of known names?


• Other hand-built lexicons


• Neural network embedding representations (in ~2 weeks)



Gazetteers example
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system to that of the Stanford NER tagger, across the
datasets discussed above. We have chosen to com-
pare against the Stanford tagger because to the best
of our knowledge, it is the best publicly available
system which is trained on the same data. We have
downloaded the Stanford NER tagger and used the
strongest provided model trained on the CoNLL03
data with distributional similarity features. The re-
sults we obtained on the CoNLL03 test set were
consistent with what was reported in (Finkel et al.,
2005). Our goal was to compare the performance of
the taggers across several datasets. For the most re-
alistic comparison, we have presented each system
with a raw text, and relied on the system’s sentence
splitter and tokenizer. When evaluating the systems,
we matched against the gold tokenization ignoring
punctuation marks. Table 6 summarizes the results.
Note that due to differences in sentence splitting, to-
kenization and evaluation, these results are not iden-
tical to those reported in Table 5. Also note that in
this experiment we have used token-level accuracy
on the CoNLL dataset as well. Finally, to complete
the comparison to other systems, in Table 7 we sum-
marize the best results reported for the CoNLL03
dataset in literature.

8 Conclusions

We have presented a simple model for NER that
uses expressive features to achieve new state of the
art performance on the Named Entity recognition
task. We explored four fundamental design deci-
sions: text chunks representation, inference algo-
rithm, using non-local features and external knowl-
edge. We showed that BILOU encoding scheme sig-
nificantly outperforms BIO and that, surprisingly, a
conditional model that does not take into account in-
teractions at the output level performs comparably
to beamsearch or Viterbi, while being considerably
more efficient computationally. We analyzed sev-
eral approaches for modeling non-local dependen-
cies and found that none of them clearly outperforms
the others across several datasets. Our experiments
corroborate recently published results indicating that
word class models learned on unlabeled text can
be an alternative to the traditional semi-supervised
learning paradigm. NER proves to be a knowledge-
intensive task, and it was reassuring to observe that

System Resources Used F1

+ LBJ-NER Wikipedia, Nonlocal Fea-
tures, Word-class Model

90.80

- (Suzuki and
Isozaki, 2008)

Semi-supervised on 1G-
word unlabeled data

89.92

- (Ando and
Zhang, 2005)

Semi-supervised on 27M-
word unlabeled data

89.31

- (Kazama and
Torisawa, 2007a)

Wikipedia 88.02

- (Krishnan and
Manning, 2006)

Non-local Features 87.24

- (Kazama and
Torisawa, 2007b)

Non-local Features 87.17

+ (Finkel et al.,
2005)

Non-local Features 86.86

Table 7: Results for CoNLL03 data reported in the literature.
publicly available systems marked by +.

knowledge-driven techniques adapt well across sev-
eral domains. We observed consistent performance
gains across several domains, most interestingly in
Webpages, where the named entities had less context
and were different in nature from the named entities
in the training set. Our system significantly outper-
forms the current state of the art and is available to
download under a research license.

Apendix– wikipedia gazetters & categories

1)People: people, births, deaths. Extracts 494,699 Wikipedia
titles and 382,336 redirect links. 2)Organizations: cooper-
atives, federations, teams, clubs, departments, organizations,
organisations, banks, legislatures, record labels, constructors,
manufacturers, ministries, ministers, military units, military
formations, universities, radio stations, newspapers, broad-
casters, political parties, television networks, companies, busi-
nesses, agencies. Extracts 124,403 titles and 130,588 redi-
rects. 3)Locations: airports, districts, regions, countries, ar-
eas, lakes, seas, oceans, towns, villages, parks, bays, bases,
cities, landmarks, rivers, valleys, deserts, locations, places,
neighborhoods. Extracts 211,872 titles and 194,049 redirects.
4)Named Objects: aircraft, spacecraft, tanks, rifles, weapons,
ships, firearms, automobiles, computers, boats. Extracts 28,739
titles and 31,389 redirects. 5)Art Work: novels, books, paint-
ings, operas, plays. Extracts 39,800 titles and 34037 redirects.
6)Films: films, telenovelas, shows, musicals. Extracts 50,454
titles and 49,252 redirects. 7)Songs: songs, singles, albums.
Extracts 109,645 titles and 67,473 redirects. 8)Events: playoffs,
championships, races, competitions, battles. Extracts 20,176 ti-
tles and 15,182 redirects.
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https://www.aclweb.org/anthology/W09-1119/


Feature-based sequence 
modeling

• Independent logistic regression


• Conditional random fields


• You should know what they are, but we'll only talk 
about a few details
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Log-linear models  (NB, LogReg, HMM, CRF...)

• x:  Text Data


• y:  Proposed class  or sequence

• θ:  Feature weights (model parameters)


• f(x,y):  Feature extractor, produces feature vector
Decision rule:

p(y|x) = 1

Z
exp

�
✓Tf(x, y)

�
✓Tf(x, y)| {z }

G(y)

arg max
y⇤2outputs(x)

G(y⇤)

1.2 Graphical Models 7

Logistic Regression

HMMs

Linear-chain CRFs

Naive Bayes
SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL

Generative directed models

General CRFs

CONDITIONAL

General
GRAPHS

General
GRAPHS

Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression,
HMMs, linear-chain CRFs, generative models, and general CRFs.

Furthermore, even when naive Bayes has good classification accuracy, its prob-
ability estimates tend to be poor. To understand why, imagine training naive
Bayes on a data set in which all the features are repeated, that is, x =
(x1, x1, x2, x2, . . . , xK , xK). This will increase the confidence of the naive Bayes
probability estimates, even though no new information has been added to the data.
Assumptions like naive Bayes can be especially problematic when we generalize
to sequence models, because inference essentially combines evidence from di↵erent
parts of the model. If probability estimates at a local level are overconfident, it
might be di�cult to combine them sensibly.
Actually, the di↵erence in performance between naive Bayes and logistic regression
is due only to the fact that the first is generative and the second discriminative;
the two classifiers are, for discrete input, identical in all other respects. Naive Bayes
and logistic regression consider the same hypothesis space, in the sense that any
logistic regression classifier can be converted into a naive Bayes classifier with the
same decision boundary, and vice versa. Another way of saying this is that the naive
Bayes model (1.5) defines the same family of distributions as the logistic regression
model (1.7), if we interpret it generatively as

p(y,x) =
exp {

P
k
�kfk(y,x)}P

ỹ,x̃ exp {
P

k
�kfk(ỹ, x̃)} . (1.9)

This means that if the naive Bayes model (1.5) is trained to maximize the con-
ditional likelihood, we recover the same classifier as from logistic regression. Con-
versely, if the logistic regression model is interpreted generatively, as in (1.9), and is
trained to maximize the joint likelihood p(y,x), then we recover the same classifier
as from naive Bayes. In the terminology of Ng and Jordan [2002], naive Bayes and
logistic regression form a generative-discriminative pair.
The principal advantage of discriminative modeling is that it is better suited to

[Diagram: Sutton and 
McCallum 2005]
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model (1.7), if we interpret it generatively as

p(y,x) =
exp {

P
k
�kfk(y,x)}P
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This means that if the naive Bayes model (1.5) is trained to maximize the con-
ditional likelihood, we recover the same classifier as from logistic regression. Con-
versely, if the logistic regression model is interpreted generatively, as in (1.9), and is
trained to maximize the joint likelihood p(y,x), then we recover the same classifier
as from naive Bayes. In the terminology of Ng and Jordan [2002], naive Bayes and
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• Whole-sequence features decompose into


• LOCAL (in LogReg): For each token, features for what 
tag to predict


• Can use features from neighboring words


• STRUCTURAL (new in CRF):  features for pairs of tags


• e.g.  Adj-Noun is a likely pair.  Det-Det is unlikely.


• If structural features are only about neighboring 
tags (Markov property), fast algorithms exist to 
make predictions (Viterbi) and help do learning

1
Z

N

∏
t=1

exp(αyt,yt+1
) exp(β′￼

⃗f(yt, xt))

p( ⃗y | ⃗x ) =



• We'll skip over the modeling details in this class


• If you want to use, there are easy-to-use software 
frameworks for them (e.g. CRFSuite):


• You provide a feature vector per token


• CRFSuite handles features for tag bigrams or trigrams


• Typically a CRF can improve accuracy a few percentage points, 
compared to independent logistic regression


• CRFs have rich theory and are strongly related to Hidden 
Markov Models


• Covered more in Ling 492B (comp ling) and CS 688 (probabilistic 
graphical models)
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