Lecture 5 Text Classification with Naive Bayes

CS 490A, Fall 2021 9/14 and 9/16 lectures https://people.cs.umass.edu/~brenocon/cs490a_f21/

Laure Thompson and Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

problem	X	У
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}
topic identification	documents	{sports, news, health,}
author identification	books	{Tolkien, Shakespeare, }
spam identification	emails	{spam, not spam}

... many more!

input **x**:

From European Union <info@eu.org>☆</info@eu.org>	
Subject	
Reply to	

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON \$10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL: CONTACT US NOW VIA EMAIL:

label y: spam or not spam

we'd like to learn a mapping *f* such that *f*(**x**) = **spam**

f can be hand-designed rules

• if "won \$10,000,000" in **x**, **y** = **spam**

• if "CS490A Fall 2020" in **x**, **y** = **not spam**

what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

training data:

x (email text)	y (spam or not spam)		
learn how to fly in 2 minutes	spam		
send me your bank info	spam		
CS585 Gradescope consent poll	not spam		
click here for trillions of \$\$\$	spam		
ideally many more examples!			

heldout data:

x (email text)	y (spam or not spam)		
CS585 important update	not spam		
ancient unicorns speaking english!!!	spam		

training data:

x (email text)	y (spam or not spam)		
learn how to fly in 2 minutes	spam		
send me your bank info	spam		
CS585 Gradescope consent poll	not spam		
click here for trillions of \$\$\$	spam		
ideally many more examples!			

heldout data:

x (email text)	y (spam or not spam)		
CS585 important update	not spam		
ancient unicorns speaking english!!!	spam		

learn mapping function on training data, measure its accuracy on heldout data

• stopped here 9/14

9/16 lecture notes

- COVID reports and masking policy.
 - Do not come to class if you are sick or possibly exposed
 - Always wear your mask
- Office hours on webpage
 >=3 different timeslots every week!
- Today: Text classification continued
 - Laptops out for a little non-coding activity shortly!
 - Paper exercise later

How to do text classification?

- Questions
 - Can word counts a useful indicator of text sentiment?
 - Can *manually defined* keyword lists be a useful indicator of text sentiment?
- Pang et al. 2002: compare human-supplied keywords against machine learning, evaluated on movie reviews
- Let's try manually defined keywords!
 - go to: http://brenocon.com/sw

training data:

x (email text)	y (spam or not spam)		
learn how to fly in 2 minutes	spam		
send me your bank info	spam		
CS585 Gradescope consent poll	not spam		
click here for trillions of \$\$\$	spam		
ideally many more examples!			

heldout data:

x (email text)	y (spam or not spam)		
CS585 important update	not spam		
ancient unicorns speaking english!!!	spam		

learn mapping function on training data, measure its accuracy on heldout data

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- training data (movie reviews):
 - i hate the movie
 - i love the movie
 - i hate the actor
 - the movie i love
 - i love love love love love the movie
 - hate movie
 - i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor i i the the love movie hate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- **goal:** infer probability distribution that generated the labeled data for each label

which of the below distributions was most likely generated in positive reviews?

logs to avoid underflow

 $p(w_1) \cdot p(w_2) \cdot p(w3) \dots \cdot p(w_n)$ can get really small esp. with large *n*

$$\log \prod p(w_i) = \sum \log p(w_i)$$

 $p(i) \cdot p(love)^{5} \cdot p(the) \cdot p(movie) = 5.95374181e-7$ $\log p(i) + 5 \log p(love) + \log p(the) + \log p(movie)$ = -14.3340757538

[This implementation trick is very common in ML and NLP]

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

posterior

$$p(y | x) = \frac{p(y) \cdot P(x | y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

what happened to the denominator???

remember the independence assumption!

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

$$= \arg \max_{y \in Y} p(y) \cdot \prod_{w \in x} P(w \mid y)$$

$$= \arg \max_{y \in Y} \log p(y) + \sum_{w \in x} \log P(w \mid y)$$

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	p(Y=y)	log(p(Y=y))
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	١	word	count	p(wly)
i	3	0.19		i	4	0.22
hate	0	0.00		hate	4	0.22
love	7	0.44		love	1	0.06
the	3	0.19		the	4	0.22
movie	3	0.19	n	novie	3	0.17
actor	0	0.00	6	actor	2	0.11
total	16		1	total	18	

p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	word	count	p(wly)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

new review X_{new}: love love the movie

$$\log p(X_{\text{new}} | \text{positive}) = \sum_{w \in X_{\text{new}}} \log p(w | \text{positive}) = -4.96$$
$$\log p(X_{\text{new}} | \text{negative}) = -8.91$$

posterior probs for Xnew

$log p(positive | X_{neW}) \propto log P(positive) + log p(X_{neW} | positive)$ = -0.84 - 4.96 = -5.80

 $\log p(\text{negative} | X_{\text{NeW}}) \propto -0.56 - 8.91 = -9.47$

What does NB predict?

what if we see no positive training documents containing the word "awesome"?

p(awesome | positive) = 0

Add- α (pseudocount) smoothing

unsmoothed
$$P(w_i | y) = \frac{\text{count}(w_i, y)}{\sum_{w \in V} \text{count}(w, y)}$$

smoothed
$$P(w_i | y) = \frac{\operatorname{count}(w_i, y) + \alpha}{\sum_{w \in V} \operatorname{count}(w, y) + \alpha | V |}$$

what happens if we do add- α smoothing as α increases?

Evaluation

- Must assess accuracy on held-out data. Either:
 - Train/test split
 - Cross validation
- Must tune hyperparameters (e.g. pseudocount) on a "development" or "tuning" set.
 - Train/dev/test split
- Significance testing for evaluation metric: given that the test set was small, could results have been due to chance?