
Lecture 3
Words & Probabilities & (start of) LMs

including slides from SLP3

CS 490A, Fall 2021 - Sept. 14

https://people.cs.umass.edu/~brenocon/cs490a_f21/

Laure Thompson and Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs490a_f21/

• Python tutorial later today!!!
details on Piazza

• Finish up your HW0!

• Exercise today - please upload by Monday

• Next week, we'll release HW1: word
probabilities & text classification

2

Words & Probabilities

• Today: from text,

• 1. Detect a single word you want

• 2. Get a string of words

• 3. Analyze word probabilities

• 4. Model text probability: language models

3

Example

• Find(me(all(instances(of(the(word(“the”(in(a(text.
the

Misses(capitalized(examples
[tT]he

Incorrectly(returns(other or(theology
[^a-zA-Z][tT]he[^a-zA-Z]

Errors

• The(process(we(just(went(through(was(based(on(fixing(
two(kinds(of(errors
• Matching(strings(that(we(should(not(have(matched((there,(
then,(other)
• False(positives((Type(I)

• Not(matching(things(that(we(should(have(matched((The)
• False(negatives((Type(II)

Errors&cont.

• In(NLP(we(are(always(dealing(with(these(kinds(of(
errors.

• Reducing(the(error(rate(for(an(application(often(
involves(two(antagonistic(efforts:(
• Increasing(accuracy(or(precision((minimizing(false(positives)
• Increasing(coverage(or(recall((minimizing(false(negatives).

Text normalization + tok.

• Every NLP task needs text normalization

• 1. Segment/tokenize words in running text

• (OK in English, but not as simple preproc in many langs)

• 2. Normalizing word formats

• 3. Sentence segmentation
and/or
paragraphs/sections/chapters/etc.

6

• Demo: simple tokenization in python

7

8

DISCHARGE CONDITION: The patient was able to oxygenate
on
room air at 93% at the time of discharge. She was
profoundly
weak, but was no longer tachycardic and had a normal
blood
pressure. Her respirations were much improved albeit
with
transmitted upper airway sounds.

DISCHARGE STATUS: The patient will be discharged to
[**Hospital1 **]
for both pulmonary and physical rehabilitation.

DISCHARGE MEDICATIONS:
1. Levothyroxine 75 mcg p.o. q.d.
2. Citalopram 10 mg p.o. q.d.
3. Aspirin 81 mg p.o. q.d.
4. Fluticasone 110 mcg two puffs inhaled b.i.d.
5. Salmeterol Diskus one inhalation b.i.d.
6. Acetaminophen 325-650 mg p.o. q.4-6h. prn.

Text data
(MIMIC III EHR)

Text preprocessing & data cleaning

https://mimic.physionet.org/

DISCHARGE CONDITION: The patient was able to oxygenate
on
room air at 93% at the time of discharge. She was
profoundly
weak, but was no longer tachycardic and had a normal
blood
pressure. Her respirations were much improved albeit
with
transmitted upper airway sounds.

DISCHARGE STATUS: The patient will be discharged to
[**Hospital1 **]
for both pulmonary and physical rehabilitation.

DISCHARGE MEDICATIONS:
1. Levothyroxine 75 mcg p.o. q.d.
2. Citalopram 10 mg p.o. q.d.
3. Aspirin 81 mg p.o. q.d.
4. Fluticasone 110 mcg two puffs inhaled b.i.d.
5. Salmeterol Diskus one inhalation b.i.d.
6. Acetaminophen 325-650 mg p.o. q.4-6h. prn.

Text data
(MIMIC III EHR)

Semi-structured, regular ordering
MEDICINE_NAME NUMBER UNITS MODIFIERS

Unstructured, linguistic data
Has semantic structure: describes

properties and relationships among
entities

All-caps headers delineate
sections: should be parsed out

as structure

https://mimic.physionet.org/

10

DISCHARGE CONDITION: The patient was able to oxygenate
on
room air at 93% at the time of discharge. She was
profoundly
weak, but was no longer tachycardic and had a normal
blood
pressure. Her respirations were much improved albeit
with
transmitted upper airway sounds.

DISCHARGE STATUS: The patient will be discharged to
[**Hospital1 **]
for both pulmonary and physical rehabilitation.

DISCHARGE MEDICATIONS:
1. Levothyroxine 75 mcg p.o. q.d.
2. Citalopram 10 mg p.o. q.d.
3. Aspirin 81 mg p.o. q.d.
4. Fluticasone 110 mcg two puffs inhaled b.i.d.
5. Salmeterol Diskus one inhalation b.i.d.
6. Acetaminophen 325-650 mg p.o. q.4-6h. prn.

Text data
(MIMIC III EHR)

Easy to structure:
write hard-coded,

custom string
processor

Harder: develop more
complex processor

Hardest: Natural language
Many possible end goals

Semi-structured, regular ordering
MEDICINE_NAME NUMBER UNITS MODIFIERS

Unstructured, linguistic data
Has semantic structure: describes

properties and relationships among
entities

All-caps headers delineate
sections: should be parsed out

as structure

https://mimic.physionet.org/

Summary

• Regular(expressions(play(a(surprisingly(large(role
• Sophisticated(sequences(of(regular(expressions(are(often(the(first(model(
for(any(text(processing(text

• For(many(hard(tasks,(we(use(machine(learning(classifiers
• But(regular(expressions(are(used(as(features(in(the(classifiers
• Can(be(very(useful(in(capturing(generalizations

11

[Slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/

12

The patient was able to oxygenate on
room air at 93% at the time of discharge. She was profoundly
weak, but was no longer tachycardic and had a normal blood
pressure. Her respirations were much improved albeit with
transmitted upper airway sounds.

Preprocessing: Text cleaning
DISCHARGE CONDITION: The patient was able to oxygenate
on
room air at 93% at the time of discharge. She was
profoundly
weak, but was no longer tachycardic and had a normal
blood
pressure. Her respirations were much improved albeit
with
transmitted upper airway sounds.

DISCHARGE STATUS: The patient will be discharged to
[**Hospital1 **]
for both pulmonary and physical rehabilitation.

DISCHARGE MEDICATIONS:
1. Levothyroxine 75 mcg p.o. q.d.
2. Citalopram 10 mg p.o. q.d.
3. Aspirin 81 mg p.o. q.d.
4. Fluticasone 110 mcg two puffs inhaled b.i.d.
5. Salmeterol Diskus one inhalation b.i.d.
6. Acetaminophen 325-650 mg p.o. q.4-6h. prn.

• Remove unwanted structure
to just the sentences/
paragraphs you want to
analyze

• Get text out of weird
formats like HTML, PDFs, or
idiosyncratic formatting (e.g.
in these EHRs)

This step is usually specific to your dataset

13

The patient was able to oxygenate on
room air at 93% at the time of discharge. She was
profoundly
weak, but was no longer tachycardic and had a normal
blood
pressure. Her respirations were much improved albeit
with
transmitted upper airway sounds.

['The', 'patient', 'was', 'able', 'to', 'oxygenate',
'on', 'room', 'air', 'at', '93', '%', 'at', 'the',
'time', 'of', 'discharge', '.', 'She', 'was',
'profoundly', 'weak', ',', 'but', 'was', 'no',
'longer', 'tachycardic', 'and', 'had', 'a',
'normal', 'blood', 'pressure', '.', 'Her',
'respirations', 'were', 'much', 'improved',
'albeit', 'with', 'transmitted', 'upper', 'airway',
'sounds', '.']

Preprocessing: Tokenization
• Words are (usually) the basic

units of analysis in NLP.

• In English, words are
delineated as tokens via
space and punctuation
conventions, recognizable via
moderately simple rules

• Tokenization: from text string
to sequence of word strings

• Sentence splitting: harder but
sometimes done too

There are good off-the-shelf tokenizers (NLTK, SpaCy, CoreNLP,
Twokenizer)

Preprocessing: Normalization

• Often:

• Lowercase words (“She” -> “she”)

• Sometimes:

• Remove numbers (“93” -> “NUMBER_NN”)

• Correct misspellings / alternate spellings (“color” -> “colour”)

• Problem specific:

• Resolve synonyms / aliases (if you know them already)

• Remove “stopwords”

• Punctuation and grammatical function words (“if”, “the”, “by”), and

• Very common words in your domain that don’t add much meaning

14

Issues&in&Tokenization
• Finland’s capital → Finland Finlands Finland’s ?
• what’re, I’m, isn’t → What are, I am, is not
• Hewlett-Packard → Hewlett Packard ?
• state-of-the-art → state of the art ?
• Lowercase → lower-case lowercase lower case ?
• San Francisco → one(token(or(two?
• m.p.h.,(PhD. → ??

[Slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/

Tokenization:&language&issues

• French
• L'ensemble→ one(token(or(two?
• L+?(L’+?(Le+?
• Want(l’ensemble to(match(with(un+ensemble

• German(noun(compounds(are(not(segmented
• Lebensversicherungsgesellschaftsangestellter
• ‘life(insurance(company(employee’
• German(information(retrieval(needs(compound&splitter

[Slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/

17

Demo: word counts!

How&many&words?

N =(number(of(tokens
V =(vocabulary(=(set(of(types

|V| is(the(size(of(the(vocabulary

Tokens&=&N Types&=&|V|
Switchboard(phone
conversations

2.4(million 20 thousand

Shakespeare 884,000 31 thousand
Google(Ndgrams 1(trillion 13(million

Church(and(Gale((1990):(|V|(>(O(N½)

"word" is ambiguous.
"word token" vs "word type"

is crucial terminology in this course!!!

Zipf’s Law

19

Type Frequencies

Alice’s Adventures in Wonderland, by Lewis Carroll

Zipf’s Law

• When word types are ranked by
frequency, then frequency (f) * rank (r) is
roughly equal to some constant (k)

f ⇥ r = k

Implications for NLP?

Lemmatization

• Reduce(inflections(or(variant(forms(to(base(form
• am,&are, is&→ be

• car,&cars,&car's,(cars'→ car

• the&boy's&cars&are&different&colors→ the&boy&car&be&different&color

• Lemmatization:(have(to(find(correct(dictionary(headword(form
• Machine(translation

• Spanish(quiero (‘I(want’),(quieres (‘you(want’)(same(lemma(as(querer
‘want’

Morphology

• Morphemes:
• The(small(meaningful(units(that(make(up(words
• Stems:(The(core(meaningdbearing(units
• Affixes:(Bits(and(pieces(that(adhere(to(stems
• Often(with(grammatical(functions

language modeling:
n-gram models

CS 490A, Fall 2021

https://people.cs.umass.edu/~brenocon/cs490a_f21/

Laure Thompson and Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

including slides from Mohit Iyyer, Dan Jurafsky, Richard Socher

https://people.cs.umass.edu/~brenocon/cs490a_f21/

goal: assign probability to a
piece of text

• why would we ever want to do this?

• translation:
• P(i flew to the movies) <<<<< P(i went to the movies)

• speech recognition:
• P(i saw a van) >>>>> P(eyes awe of an)

• text classification (next week):
• P(i am so mad!! | [author is happy]) <

P(i am so mad!! | [author is not happy])

24

You	use	Language	Models	every	day!

2/1/187

25

You	use	Language	Models	every	day!

2/1/188

26

Probabilistic Language Modeling
•Goal: compute the probability of a sentence or
sequence of words:
 P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

•A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1) is called a language model or LM

we have already seen one way to do this… where?

27

How to compute P(W)
• How to compute this joint probability:

•P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

28

Reminder: The Chain Rule

•Recall the definition of conditional probabilities
P(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

•More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

•The Chain Rule in General
 P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

29

The Chain Rule applied to compute joint
probability of words in sentence

P(“its water is so transparent”) =
 P(its) × P(water|its) × P(is|its water)
 × P(so|its water is) × P(transparent|its water is so)

30

How to estimate these probabilities
• Could we just count and divide?

•No! Too many possible sentences!
•We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)

31

How to estimate these probabilities
• Could we just count and divide?

•No! Too many possible sentences!
•We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)

• stopped here 9/9

32

33

Markov Assumption

•Simplifying assumption: 
 
 
 
 

•Or maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov (1856~1922)

34

Markov Assumption

• In other words, we approximate each
component in the product

35

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:

36

Dan*Jurafsky

Approximating'Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

37

N-gram models

•We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language
• because language has long-distance dependencies:

“The computer which I had just put into the machine
room on the fifth floor crashed.”

•But we can often get away with N-gram models

we're doing longer-distance language
modeling near the end of this course

38

39

• The Maximum Likelihood Estimate (MLE)

- relative frequency based on the empirical counts on a
training set

Estimating bigram probabilities

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

c — count

40

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

MLE

???
???

41

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

MLE

42

A bigger example:  
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants
close by
•mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are
available
• i’m looking for a good place to eat breakfast
•when is caffe venezia open during the day

43

Raw bigram counts

• Out of 9222 sentences

44

Raw bigram probabilities
• Normalize by unigrams:

• Result:

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

MLE

45

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
 P(I|<s>)
 × P(want|I)
 × P(english|want)
 × P(food|english)
 × P(</s>|food)
 = .000031

these probabilities get super tiny when we
have longer inputs w/ more infrequent
words… how can we get around this?

46

What kinds of knowledge?

•P(english|want) = .0011
•P(chinese|want) = .0065
•P(to|want) = .66
•P(eat | to) = .28
•P(food | to) = 0
•P(want | spend) = 0
•P (i | <s>) = .25

grammar — infinitive verb

grammar

???

about the world

47

Language Modeling Toolkits

•SRILM
•http://www.speech.sri.com/projects/
srilm/

•KenLM
•https://kheafield.com/code/kenlm/

48

Evaluation: How good is our model?
• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently
observed” sentences
• Than “ungrammatical” or “rarely observed” sentences?

•We train parameters of our model on a training set.
•We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our
training set, totally unused.
• An evaluation metric tells us how well our model does on
the test set.

49

Evaluation: How good is our model?

• The goal isn’t to pound out fake sentences!
• Obviously, generated sentences get “better” as we
increase the model order
•More precisely: using maximum likelihood
estimators, higher order is always better likelihood
on training set, but not test set

50

Dan*Jurafsky

Training'on'the'test'set

• We*can’t*allow*test*sentences*into*the*training*set
• We*will*assign*it*an*artificially*high*probability*when*we*set*it*in*

the*test*set
• “Training*on*the*test*set”
• Bad*science!
• And*violates*the*honor*code

30

51

Dan*Jurafsky

Shakespeare'as'corpus

• N=884,647*tokens,*V=29,066

• Shakespeare*produced*300,000*bigram*types*
out*of*V2=*844*million*possible*bigrams.
• So*99.96%*of*the*possible*bigrams*were*never*seen*
(have*zero*entries*in*the*table)

• Quadrigrams worse:***What's*coming*out*looks*
like*Shakespeare*because*it*is Shakespeare

52

Dan*Jurafsky

Zeros
• Training*set:

…*denied*the*allegations
…*denied*the*reports
…*denied*the*claims
…*denied*the*request

P(“offer”*|*denied*the)*=*0

• Test*set
…*denied*the*offer
…*denied*the*loan

53

Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

54

Dan*Jurafsky

AddMone'estimation

• Also*called*Laplace*smoothing
• Pretend*we*saw*each*word*one*more*time*than*we*did
• Just*add*one*to*all*the*counts!

• MLE*estimate:

• Add,1*estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

(again!)

55

Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

56

Dan*Jurafsky

LaplaceAsmoothed(bigrams

57

Dan*Jurafsky

Reconstituted(counts

58

Dan*Jurafsky

Compare(with(raw(bigram(counts

59

Dan*Jurafsky

AddM1'estimation'is'a'blunt'instrument

• So*add,1*isn’t*used*for*N,grams:*
• We’ll*see*better*methods

• But*add,1*is*used*to*smooth*other*NLP*models
• For*text*classification*
• In*domains*where*the*number*of*zeros*isn’t*so*huge.

60

61

Dan*Jurafsky

Backoff and(Interpolation
• Sometimes*it*helps*to*use*less context

• Condition*on*less*context*for*contexts*you*haven’t*learned*much*about*

• Backoff:'
• use*trigram*if*you*have*good*evidence,
• otherwise*bigram,*otherwise*unigram

• Interpolation:'
• mix*unigram,*bigram,*trigram

• Interpolation*works*better

62

Dan*Jurafsky

Linear'Interpolation

• Simple*interpolation

• Lambdas*conditional*on*context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

63

Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*

from*a*count*of*4*to*save*probability*

mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea

• Divide*up*22*million*words*of*AP*

Newswire

• Training*and*held,out*set

• for*each*bigram*in*the*training*set

• see*the*actual*count*in*the*held,out*set!

Bigram*count*

in*training

Bigram*count*in*

heldout set

0 .0000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26

64

Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*

from*a*count*of*4*to*save*probability*

mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea

• Divide*up*22*million*words*of*AP*

Newswire

• Training*and*held,out*set

• for*each*bigram*in*the*training*set

• see*the*actual*count*in*the*held,out*set!

Bigram*count*

in*training

Bigram*count*in*

heldout set

0 .0000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26

why do you think the training and heldout counts differ?

65

Dan*Jurafsky

Absolute(Discounting(Interpolation
• Save*ourselves*some*time*and*just*subtract*0.75*(or*some*d)!

• (Maybe*keeping*a*couple*extra*values*of*d*for*counts*1*and*2)

• But*should*we*really*just*use*the*regular*unigram*P(w)?
70

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

