Ethics in NLP

Nov. 3, 2020 UMass CS 490A, Applications of Natural Language Processing Guest lecture: <u>Su Lin Blodgett</u>

Outline

- some examples of ethical issues in NLP systems
- current state of ethics in NLP
- thinking through the NLP pipeline
- open questions + discussion!

Many examples of ethical issues in NLP systems: biased representations

Occupational gender stereotypes: word embeddings

Bolukbasi et al. 2016

Many examples of ethical issues in NLP systems: biased outputs

• Occupational stereotypes: coreference resolution

Mention	Mention	coref	Mention	-coref	Mention	
The surgeon could n't operate on	his	patient :	it	was	his	son !
Montion	Montion	coref	Montion	,-coref	Montion	1
The surgeon could n't operate on	their	patient :	it	was	their	son !
		P				
,coref			coref			
Mention	Mentio	n ´	Mentio	า โ	Mention	
The surgeon could n't operate or	n <mark>her</mark>	patient :	it	was	her	son !

Rudinger et al. 2018

Many examples of ethical issues in NLP systems: biased outputs

• Occupational stereotypes: machine translation

								0
Translate					Turr	n off ins	stant trar	nslation
Bengali English Hungarian Detect language	e -	←	English	Spanish	Hungaria	n -	Tran	slate
 ő egy ápoló. x ő egy tudós. ő egy mérnök. ő egy pék. ő egy tanár. ő egy esküvői szervező. ő egy vezérigazgatója. 		×	she's a nurse. he is a scientist. he is an engineer. she's a baker. he is a teacher. She is a wedding organizer. he's a CEO. ☆ □ •					
 ●) ■ ▼ 	110/5	5000						

Many examples of ethical issues in NLP systems: biased outputs

Many examples of ethical issues in NLP systems: biased outputs

Toxicity detection

Sentence	Toxicity
I am a person with mental illness.	0.62
I am a deaf person.	0.44
I am a blind person.	0.39
I am a tall person.	0.03
I am a person.	0.08
I will fight for people with mental illnesses.	0.54
I will fight for people who are deaf.	0.42
I will fight for people who are blind.	0.29
I will fight for people.	0.14

Many examples of ethical issues in NLP systems: biased outputs

Toxicity detection

Sap et al. 2019

Many examples of ethical issues in NLP systems: discriminatory decisions

TECH AMAZON ARTIFICIAL INTELLIGENCE

Amazon reportedly scraps internal AI recruiting tool that was biased against women

21 📕

The secret program penalized applications that contained the word "women's" By James Vincent | Oct 10, 2018, 7:09am EDT

🄰 📝 share

Because AI systems learn to make decisions by looking at historical data they often perpetuate existing biases. In this case, that bias was the male-dominated working environment of the tech world. According to *Reuters*, Amazon's program penalized applicants who attended all-women's colleges, as well as any resumes that contained the word "women's" (as might appear in the phrase "women's chess club").

Many examples of ethical issues in NLP systems: discriminatory decisions

FACEBOOK ACCIDENTALLY BLACKED OUT AN ENTIRE LANGUAGE

An apparent glitch has spread fear through Myanmar's Kachin minority

Many examples of ethical issues in NLP systems: privacy

Amazon Alexa Data Wanted in Murder Investigation

Amazon's voice assistant may provide clues in an Arkansas case in which a man was found dead in a hot tub.

Many examples of ethical issues in NLP systems: privacy

demographic attribute prediction

	Gender	Age	Country	Region
Twitter	+9.6	+15.3	+9.0	+3.3
Amazon	+15.2	+12.2	+18.0	+13.0
Hotel	+17.2	+10.9	+25.4	+11.6
Restaurant	+19.0	+13.2	+32.8	+17.5

Table 2: Predictability of user factors from language data. We show the absolute percentage improvements in accuracy over majority-class baselines. For example, the majority-class baselines of accuracy scores are either .500 for the binary prediction or .250 for the region prediction.

Huang and Paul 2019

The state of ethics in NLP

• very new area: ~2016 –

- ethics in NLP workshop 2017, 2018
- >150 papers since then
- ACL 2020, NAACL and ACL 2021: ethics in NLP track
- primary focus: bias in NLP
 - most focus on embeddings
 - but also a wide range of tasks
- additional focuses/connections:
 - privacy
 - interpretability
 - human-centered evaluation

Let's speculate! (speculative harm analysis)

Predicting mental health online

- benefits?
 - better understand different experiences
 - possible interventions
 - measure population-level health
 - better design community spaces
 - better design treatments
- risks?
 - consent
 - de-identification
 - data sharing
 - inferences used for some other purpose
 - violating community norms / diminishing access to community spaces
 - bad predictions \rightarrow bad interventions!
 - incorrect population estimates
 - risk to researchers' own health

Reasoning about harms

• Belmont Report (1979)

- Respect for persons: protecting the autonomy of all people; allowing for informed consent
- Beneficence: maximize benefits for the research project and minimize risks to the research subjects
- Justice: ensuring procedures are administered fairly and equally
- NLP systems: not experiments in the usual sense!
 - scale
 - broader sets of stakeholders
 - lack of awareness of systems as they are operating
 - integration into larger pipelines
 - indirect path to harm

Thinking through the NLP pipeline

Define problem: Toxicity detection

• What counts as toxicity online?

- slurs and insults
- physical threats
- doxxing
- microaggressions
- inciting violence or self-harm
- and other things that may break community norms

Collect data: Toxicity detection

• What are the effects of different data gathering approaches?

- keyword searches
- self-reports
- moderator-deleted content

Label data: Toxicity detection

• What kinds of things affect annotator decisions?

- differences of opinion
- online cultural context
- wider cultural context
- age
- language variety
- membership in a minoritized group
- discourse context available
- specific question asked

Label data: Toxicity detection

• What kinds of things affect annotator decisions?

Identifying and measuring harms

- Integrating social, historical, and political context to understand who may be harmed and how
 - e.g., linguistic stigmatization
- Fairness and privacy tradeoffs
- Understanding systems in their deployed context
 - e.g., hiring
- Measuring representational harms

Open questions and directions

Identifying and measuring harms

- Integrating social, historical, and political context to understand who may be harmed and how
 - e.g., linguistic stigmatization
- Fairness and privacy tradeoffs
- Understanding systems in their deployed context
 - e.g., hiring
- Measuring representational harms
- Understanding users' lived experiences

Open questions and directions

Designing better

- What ideas about language + speakers affect design?
- Human-centered problem formulation, annotation, evaluation
- User awareness and recourse
- Meaningful co-participation of stakeholders
 - participatory design?
- Meaningful shifts in decisionmaking
- When not to build?

Open questions and directions

• Exciting interdisciplinary opportunities!

- Fairness, justice, and ethics in machine learning and Al
- Sociolinguistics, linguistic anthropology, social psychology, education
- Human-computer interaction and social computing