
Neural Language Models
and BERT

CS 490A, Fall 2020

Applications of Natural Language Processing

https://people.cs.umass.edu/~brenocon/cs490a_f20/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

including slides from Mohit Iyyer and Richard Socher

https://people.cs.umass.edu/~brenocon/cs490a_f20/

Language Models

• LM = probabilistically predict words
• We’ve seen probabilistic word prediction

already. Where?  

• Use nearby words as context
• Next-word prediction: give probability to a

sequence

2

Why model language?
• Train LM -> get word embeddings 
 

• LM probabilities for tasks
• Score quality of proposed translations
• Predict/score grammatical corrections
• Generate language  

• Train LM, infer on new doc -> get token
embeddings

3

4

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Attention mechanisms: background

“you can’t cram the meaning
of a whole %&@#&ing
sentence into a single

$*(&@ing vector!”
— Ray Mooney (famous NLP professor at UT Austin)

5

idea: what if we use multiple vectors?

6

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Instead of:
les pauvres sont démunis =

les pauvres sont démunis =
Let’s try:

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

(all 4 hidden states!)

The solution: attention

• Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a
particular part of the source sequence at
each time step
• Conceptually similar to word alignments

7

How does it work?

• in general, we have a single query vector and
multiple key vectors. We want to score each
query-key pair

8

9

Sequence-to-sequence with attention

2/15/1853

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

dot product

Query 1:
decoder, first time step

dot product with keys
(encoder hidden states)

10

Sequence-to-sequence with attention

2/15/1854

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”les”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

11

Sequence-to-sequence with attention

2/15/1855

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.

12

Sequence-to-sequence with attention

2/15/1856

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !"# as before

!"#

the

13

Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself

2/15/1863

9/24/14

5

Alignments: harder

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

many-to-one
alignments

The
balance

was
the

territory

of
the

aboriginal
people

 L
e

re
st

e

ap
pa

rte
na

it
au

x

au
to

ch
to

ne
s

Alignments: hardest

The
poor
don’t
have

any
money

Les
pauvres
sont
démunis

many-to-many
alignment

The
poor

don�t
have

any

money

Le
s

pa
uv

re
s

so
nt

dé

m
un

is

phrase
alignment

Alignment as a vector

Mary
did
not

slap

the
green
witch

1
2
3
4

5
6
7

Maria
no
daba
una
botefada
a
la
bruja
verde

1
2
3
4
5
6
7
8
9

i j

1
3
4
4
4
0
5
7
6

aj=i
•  used in all IBM models
•  a is vector of length J
•  maps indexes j to indexes i
•  each aj
 {0, 1 … I}
•  aj = 0 	 fj is �spurious�
•  no one-to-many alignments
•  no many-to-many alignments
•  but provides foundation for

phrase-based alignment

IBM Model 1 generative story

And
the

program
has

been
implemented

aj

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6

Choose length J for French sentence

For each j in 1 to J:

–  Choose aj uniformly from 0, 1, … I

–  Choose fj by translating eaj

Given English sentence e1, e2, … eI

We want to learn
how to do this

Want: P(f|e)

IBM Model 1 parameters

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6 aj

Applying Model 1*

As translation model

As alignment model

P(f, a | e) can be used as a translation model or an alignment model

* Actually, any P(f, a | e), e.g., any IBM model

Hierarchical attention

• Yang et al., 2016:
hierarchical attention
for document
classification

14

Proceedings of NAACL-HLT 2016, pages 1480–1489,
San Diego, California, June 12-17, 2016. c�2016 Association for Computational Linguistics

Hierarchical Attention Networks for Document Classification

Zichao Yang1, Diyi Yang1, Chris Dyer1, Xiaodong He2, Alex Smola1, Eduard Hovy1

1Carnegie Mellon University, 2Microsoft Research, Redmond
{zichaoy, diyiy, cdyer, hovy}@cs.cmu.edu
xiaohe@microsoft.com alex@smola.org

Abstract

We propose a hierarchical attention network
for document classification. Our model has
two distinctive characteristics: (i) it has a hier-
archical structure that mirrors the hierarchical
structure of documents; (ii) it has two levels
of attention mechanisms applied at the word-
and sentence-level, enabling it to attend dif-
ferentially to more and less important con-
tent when constructing the document repre-
sentation. Experiments conducted on six large
scale text classification tasks demonstrate that
the proposed architecture outperform previous
methods by a substantial margin. Visualiza-
tion of the attention layers illustrates that the
model selects qualitatively informative words
and sentences.

1 Introduction

Text classification is one of the fundamental task in
Natural Language Processing. The goal is to as-
sign labels to text. It has broad applications includ-
ing topic labeling (Wang and Manning, 2012), senti-
ment classification (Maas et al., 2011; Pang and Lee,
2008), and spam detection (Sahami et al., 1998).
Traditional approaches of text classification repre-
sent documents with sparse lexical features, such
as n-grams, and then use a linear model or kernel
methods on this representation (Wang and Manning,
2012; Joachims, 1998). More recent approaches
used deep learning, such as convolutional neural net-
works (Blunsom et al., 2014) and recurrent neural
networks based on long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) to learn text
representations.

pork belly = delicious . || scallops? || I don’t even

like scallops, and these were a-m-a-z-i-n-g . || fun

and tasty cocktails. || next time I in Phoenix, I will
go back here. || Highly recommend.

Figure 1: A simple example review from Yelp 2013 that con-
sists of five sentences, delimited by period, question mark. The
first and third sentence delivers stronger meaning and inside,
the word delicious, a-m-a-z-i-n-g contributes the most in defin-
ing sentiment of the two sentences.

Although neural-network–based approaches to
text classification have been quite effective (Kim,
2014; Zhang et al., 2015; Johnson and Zhang, 2014;
Tang et al., 2015), in this paper we test the hypoth-
esis that better representations can be obtained by
incorporating knowledge of document structure in
the model architecture. The intuition underlying our
model is that not all parts of a document are equally
relevant for answering a query and that determining
the relevant sections involves modeling the interac-
tions of the words, not just their presence in isola-
tion.

Our primary contribution is a new neural archi-
tecture (§2), the Hierarchical Attention Network
(HAN) that is designed to capture two basic insights
about document structure. First, since documents
have a hierarchical structure (words form sentences,
sentences form a document), we likewise construct a
document representation by first building represen-
tations of sentences and then aggregating those into
a document representation. Second, it is observed
that different words and sentences in a documents
are differentially informative. Moreover, the impor-

1480

Corpus attention

15

Transformers: Self-attention

Attention for LM

17

BERT
• “Bidirectional… Transformers”

• Transformer: a specific neural net architecture for token
sequences, that uses attention and token embeddings

• Bidirectional: The core model is a masked LM, predicting
missing word(s) from rest of words in sentence

• Intended for pretraining pipeline
• Initially train on a gazillion documents (using a GPU-days)
• Then apply pretrained model on new data to calculate token-

level embeddings. (No word prediction at all any more!) They
turn out to be useful!

• BERT (+ variants) is incredibly successful at many
classification, tagging, and generation tasks
• This space changes very rapidly, so who knows how long it’s

SOTA. Two years is longer than I would have guessed though?

18

19 [Michael Collins 2019 lecture]

https://www.youtube.com/watch?v=jfwqRMdTmLo

20 [Michael Collins 2019 lecture]

https://www.youtube.com/watch?v=jfwqRMdTmLo

Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

21

Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

Multi-head self-attention [Vaswani et al. 2017
original notation]

These are
residual

connections

Positional encoding

Hacks to get it to work:

I went to class and took ___

0 0 1 0 0
cats TV notes took sofa

0.025 0.025 0.9 0.025 0.025
with label smoothing

Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by using subword tokenization

• Initial analysis step iteratively merges frequent character n-grams to form the
vocabulary

• Confusing name comes from data compression literature - not actually about bytes for
us

27 Sennrich et al., ACL 2016

Using BERT

• You get
• Per-token embeddings
• Multiple layers at each
• Embedding for per-sentence “[CLS]” symbol

• Use as input for tasks. Two learning
approaches

• “Frozen”: use them as input features
• Fine-tuning: backprop through the actual BERT

model itself

28

• Many pretrained BERT or BERT-like models
are available (especially for English and other
high-resource languages…)

• Check out HuggingFaces’ examples
• https://huggingface.co/transformers/

examples.html
• Many other frameworks too - e.g. AllenNLP

29

https://huggingface.co/transformers/examples.html

30

31

Weight Initializations, Data Orders, and Early Stopping

Figure 2. A visualization of validation performance for all experiments, where each colored cell represents the performance of a training
run with a specific WI and DO seed. Rows and columns are sorted by their average, such that the best WI seed corresponds to the top row
of each plot, and the best DO seed correspond to the right-most column. Especially on smaller datasets a large variance in performance
is observed across different seed combinations, and on MRPC and RTE models frequently diverge, performing close to the majority
baselines (listed in Table 2).

Figure 3. Some seeds are better then others. Plots show the kernel density estimation of the distribution of validation performance for
best and worst WI and DO seeds. Curves for DO seeds are shown in dashed lines and for WI in solid lines. MRPC and RTE exhibit
pronounced bimodal shapes, where one of the modes represents divergence; models trained with the worst WI and DO are more likely to
diverge than learn to predict better than random guessing. Compared to the best seeds, the worst seeds are conspicuously more densely
populated in the lower performing regions, for all datasets.

the expected standard deviation from the WI and DO seeds
is comparable, and are slightly below the overall standard
deviation inside a given task.

4.2. Some random seeds are better than others

To investigate whether some WI or DO seeds are better
than their counterparts, Figure 3 plots the random seeds
with the best and worst average performance. The best and
worst seeds exhibit quite different behavior: compared to the
best, the worst seeds have an appreciably higher density on
lower performance ranges, indicating that they are generally
inferior. On MRPC, RTE, and CoLA the performance of
the best and worst WIs are more dissimilar than the best and
worst DOs, while on SST the opposite is true. This could be
related to the size of the data; MRPC, RTE, and CoLA are
smaller datasets, whereas SST is larger, so SST has more
data to order and more weight updates to move away from
the initialization.

MRPC RTE CoLA SST
WI 2.0⇥10�6 2.8⇥10�4 7.0⇥10�3 3.3⇥10�2

DO 8.3⇥10�3 3.2⇥10�3 1.1⇥10�2 1.3⇥10�5

Table 4. p-values from ANOVA indicate that there is evidence to
reject the null hypothesis that the performance of the best and worst
WIs and DOs have distributions with the same means (p < 0.05).

Using ANOVA (Fisher, 1935) to test for statistical signif-
icance, we examine whether the performance of the best
and worst DOs and WIs have distributions with different
means. The results are shown in Table 4. For all datasets,
we find the best and worst DOs and WIs are significantly
different in their expected performance (p < 0.05). We
include a discussion of the assumptions behind ANOVA in
the appendix.

Weight Initializations, Data Orders, and Early Stopping

Figure 4. Some promising seeds can be distinguished early in training. The plots show training curves for 20 random WI and DO
combinations for each dataset. Models are evaluated every 10th of an epoch (except SST, which was evaluated every 100 steps, equivalent
to 42 times per epoch). For the smaller datasets, training is unstable, and a non-negligible portion of the models yields poor performance,
which can be identified early on.

Figure 5. Performance early in training is highly correlated with performance late in training. Each figure shows the Spearman’s rank
correlation between the validation performance at different points in training; the axes represent epochs. A point at coordinates i and j in
the plots indicates the correlation between the best found performances after i and after j evaluations. Note that the plots are symmetric.

dataset this is still a strong strategy.

Early stopping works We compare this algorithm with
our baseline of running multiple experiments all the way
through training, without any early stopping (f=1, t=p) and
using the same amount of computation. Specifically, for a
given computational budget equivalent to fully training t

models, we measure improvement as the relative error reduc-
tion from using early stopping with the best found settings
for that computational budget. Figure 7 shows the relative
error reduction for each dataset as the computational budget
varies, where we observe small but reasonably consistent
improvements on all tasks.

6. Related work
Most work on hyperparameter optimization tunes a number
of impactful hyperparameters, such as the learning rate, the
width of the layers in the model, and the strength of the
regularization (Li et al., 2018; Bergstra et al., 2011). For
modern machine learning models such tuning has proven
to have a large impact on the performance; in this work we

only examine two oft-overlooked choices that can be cast as
hyperparameters and still find room for optimization.

Melis et al. (2018) heavily tuned the hyperpamareters of an
LSTM language model, for some experiments running 1,500
rounds of Bayesian optimization (thus, training 1,500 mod-
els). They showed that an LSTM, when given such a large
budget for hyperparameter tuning, can outperform more
complicated neural models. While such work informs the
community about the best performance found after expend-
ing very large budgets, it is difficult for future researchers
to build on this without some measure of how the perfor-
mance changes as a function of computational budget. Our
work similarly presents the best-found performance using a
large budget (Table 1), but also includes estimates of how
performance changes as a function of budget (Figure 1).

A line of research has addressed the distribution from which
initializations are drawn. The Xavier initialization (Glorot
& Bengio, 2010) and Kaiming initialization (He et al., 2015)
initialize weights by sampling from a uniform distribution
or normal distribution with variance scaled so as to preserve
gradient magnitudes through backpropagation. Similarly,

