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Neural Networks in NLP

e Motivations:

* Word sparsity => denser word representations
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e Models
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The Second Wave: NNs in NLP
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e % of ACL paper titles with “connectionist/connectionism”, “parallel
istributed”, “neural network”, or “deep learning” -

° https://wwv%glweb.orq/antholoqv/

Y |
1980 2000 WVV\J 2020
ear

1984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2000 2001 2002
1 2 6 2 2 6 3 3 1 8 3 2 3 9 3 1 4

2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020
3 3 4 1 1 1 1 2 8 13 39 99 199 184 296 245 46

2021 <_7 = %



The Second Wave: NNs in NLP
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NN Text Classification

e (oals:

. AVC;W@
» Generalize beyond individual words 0ol sl
® (General model architectures that work well

for many different datasets (and tasks))

e [or medium-to-large labeled training
W
datasets, deep learning methods generally
outperform feature-based LogReg
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composing embeddings

* neural networks compose word embeddings into

vectors for phrases, sentences, and documents
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what is deep learning”
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what is deep learning”
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output

X1
X;

> hyp(x)
X3
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Input

Vector xq ... Xy

inputs encoded as
real numbers



Logistic Regression by Another Name: Map inputs to output

hw,b(x)

Output
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Logistic Regression by Another Name: Map inputs to output

hw,b(x)

Output

Input

Vector x ... Xy f(z Wix; + b)
/

add bias



Logistic Regression by Another Name: Map inputs to output A
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Activation q
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NN: kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!




NN: kind of like several intermediate logregs

... which we can feed into another logistic regression function
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NN: kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)
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what is deep learning”

Neural Network




what is deep learning”

input

nonlinear transformation

Neural Network nonlinear transformation ]’ln =f(Whn_1 + b)

nonlinear transformation

output




Nonlinear activations

e “Squash functions”!
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IS a multi-layer neural network with no nonlinearities
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IS a multi-layer neural network with no nonlinearities
(i.e., fis the identity f(x) = Xx)
more powerful than a one-layer network?

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W,f(Wx))) = Wx



why nonlinearities

Were

!
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credit for figure:
Christopher Olah
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why nonlinearities”
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/ “neuron”
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Layer L, Layer L,

a?) = (W x + Wi + Wiy x 1 1)
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Layer L,

agz) = (WZ(.:)X1 + WQ(;)XQ + W2(;)X3 ‘l‘bgl))
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Layer L,
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we will be
learning the x’s
and the W’s!
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IN matrix-vector notation...

hw.u(x)

Layer L,

hy, = f(Wahy + b)

Layer L,

hy, = f(Wyx + b)
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Dracula is a really good book!

neural
network

Positive



softmax function

® |et’s say | have 3 classes (e.g., positive, neutral,
negative) c - —

° %smmclass logreg with “cross product” features
etween input vector x and 3 output classes. for every

class c, i have an associated weight vector B¢, then

p.x
eC
P(y=C|X)=—%
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softmax function

ex

g
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X IS a vector

softmax(x) =

X;j IS dimension j of x

each dimension j of the softmaxed output
represents the probability of class
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“bag of embeddings”

predict Positive affine transformation

\
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a really  good ook
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deep averaging networks

out = softmax(W; - z,)
7
zZ9 = f(LVE 2
nonlinear function

1= f(W7 - av)
N

affine transformation
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a really  good ook
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deep averaging networks
,*

out = softmax(W; - z,)

what are our model

parameters (i.€.,

a really  good ook

CH Co C3 C4



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==r2)

these parameters
given the loss L7

a really  good ook
C1 Co C3 C4



deep averaging networks
— [@ ()J\'enl,b%! out = softmax(W; - z,)

L = cross- entropy(out, ground-truth) ~T/
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deep averaging networks
L é\g = softmax(W; - z,)

chain rulelll
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL II 2o = f(Wa - 21)

= 777
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL oL oout dz,
oW, dout oz, ow, W
z1 = f(W1 - av)
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backpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!
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41 Rumelhart et al., 1986



deep learning frameworks make

building NNs super easy!

/g Y lann
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set up the network

def _ init_ (self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300) :

super (DanModel, self)._ init_ ()

self.n_classes = n_classes

elf.vocab_size = vocab_size

elf.emb_dim = emb_dim

self.n_hidden_units = n_hidden_units

self.embeddings = nn.Eggedding(self.vocab_size,

self.emb_dim)

self.classif] = nn.Sequential (
(self.n_hidden_units,
self.n_hidden_units),

r(self.n_hidden_units,

1lf.n_classes))
elf._softm = nn.SoO ax ()
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deep learning frameworks make

out = softmax(W, - z,)

av —=
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book

building NNs super easy!

do a forward pass to compute prediction

def forward(self, batch, probs=False):

text = batch[’text’][’"tokens’]

length = batch[’length’]

text_embed = self._word_embeddings (text)

# Take the mean embedding. Since padding results
# in zeros 1its safe to sum and divide by length

encoded = text_embed.sum (1)

encoded /= lengths.view (text_embed.size(0), -1)

# Compute the network score predictions

logits = self.classifier (encoded)
if probs:

return self._softmax(logits)
else:

return logits



a

deep learning frameworks make
building NNs super easy!

out = softmax(Ws - z») do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. z1 = f(W7 - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
Z batch_loss = criterion (out,
av = batch[’ label’])
n batch_loss.backward ()

=1 —
/f \\ self.optimizer.step ()

really good book



a

deep learning frameworks make
building NNs super easy!

out = softmax(Ws - z») do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. z1 = f(W7 - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
n . batch_loss = criterion (out,
av = G batch[’label’])

n batch_loss.backward ()

=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!



Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)

A

overfitting

model power

—
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L2 regularization Jd -

Z . (zefj 7 ) % b

=T m—— —
0 represents all of the model’s parameters!

f
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penalizing their norm leads to smaller weights
we are constraining the parameter space 9(‘

we are putting a prior on our model
~ J,‘
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Dropout for NNs

of neurons to O in the forward pass
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(b) After applying dropout.
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Why?
randomly set p% of neurons to O in the forward pass

—) s g tail

— S ClAWS /

—)  iSchievous look
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A few other tricks

® T[raining can be unstable! Therefore some
tricks.

e |nitialization — random small but reasonable
values can help.

e [ ayer normalization (very important for some
recent architectures)
® Big, robust open-source libraries to let you
computation graphs, then run backprop for
you

e PyTorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP...)
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