Neural
(INL

Networks

P ch. 3)

CS 490A, Fall 2020

Applications of Natural Language Processing
https://people.cs.umass.edu/~brenocon/cs490a 20/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

some slides adapted from Mohit lyyer, Jordan
Boyd-Graber, Richard Socher, Eisenstein (2019)

Neural Networks in NLP

e Motivations:

* Word sparsity => denser word representations
W_\M
. No@ earitx

e Models
» BoE/ Deep Averaging et X NN
. Convolutp@/ NN /04\7A*W

e Learning] - { oy

* Backprop
Z * Dropout

The Second Wave: NNs in NLP

7 1]

e % of ACL paper titles with “connectionist/connectionism”, “parallel
istributed”, “neural network”, or “deep learning” -

° https://wwv%glweb.orq/antholoqv/

Y |
1980 2000 WVV\J 2020
ear

1984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2000 2001 2002
1 2 6 2 2 6 3 3 1 8 3 2 3 9 3 1 4

2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020
3 3 4 1 1 1 1 2 8 13 39 99 199 184 296 245 46

2021 <_7 = %

The Second Wave: NNs in NLP

701 IEE ACL
BN EMNLP
N EACL

60 1 I NAACL

w
o
1

S
o
1

w
o
1

Percentage (%) of Deep learning papers in various conference

2012 2013 2014 2015 2016 2017
Years

NN Text Classification

e (oals:

. AVC;W@
» Generalize beyond individual words 0ol sl
® (General model architectures that work well

for many different datasets (and tasks))

e [or medium-to-large labeled training
W
datasets, deep learning methods generally
outperform feature-based LogReg

o 4.
- QWM) o \V\\J‘MJ S TV/WZ!‘/ Zﬁmﬂﬁ

5

composing embeddings

* neural networks compose word embeddings into

vectors for phrases, sentences, and documents
— -

neural (a"y /9;3?JI /bo—o\k
network (| . . H)=1

b Ubok (MGL/\
s =

what is deep learning”

W
f (input) = output
M =

what is deep learning”

input

'

Neural Network

output

Logistic Regression by Another Name: Map inputs to output

X1
X;

hw,b(x)
X3

+1

Logistic Regression by Another Name: Map inputs to output

X1
X;

> hyp(x)
X3

+1

Input

Vector xq ... Xy

inputs encoded as
real numbers

Logistic Regression by Another Name: Map inputs to output

hw,b(x)

Output

|
nput f(z Wix; + b)

Vector Xy ... Xy

multiply inputs

Logistic Regression by Another Name: Map inputs to output

hw,b(x)

Output

Input

Vector x ... Xy f(z Wix; + b)
/

add bias

Logistic Regression by Another Name: Map inputs to output A

A}

Activation q
%2" S qrishy 1(2““@‘”
’

S
Input
flz)=
(2) 1+ exp(—2)
Vector X{ ... Xg —
% %
pass through

nonlinear siamoid

S —4

S~ —

NN: kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

NN: kind of like several intermediate logregs

... which we can feed into another logistic regression function
2 lndewsty o affeet
clifdev Lo~ 0
m - w«%ﬂm L@ct

o

@/ /:"/3,((7//?\ - It is the:> losts function
= AN that will direct what
: 4 the intermediate
Iy hidden variables should
; oo (50 be, so as to do a good
@ ~ vert _ job at predicting the

targets for the next
layer, etc.

NN: kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

H. Loy |

what is deep learning”

Neural Network

what is deep learning”

input

nonlinear transformation

Neural Network nonlinear transformation]’ln =f(Whn_1 + b)

nonlinear transformation

output

Nonlinear activations

e “Squash functions”!
KLOQIS’[IC / Sigmoid WH(?I‘/

values

x
I + e X
&’g_"ﬁbj
anh
2

f(x) =tanh(x) = e

=5 Ve > il

@ for x<0 3)

& {Q for x>0

IS a multi-layer neural network with no nonlinearities

more p(c|>\/eve:f:1? ’;[Eaeml daGQEZ%work?
D—:f@f@\bs) = W WX
z -]/J
ore mﬂ%y
U

Eé”l vobor 4(2) |

/> //M con (ea-n>7 qavry ﬂuo"z}/l

\

IS a multi-layer neural network with no nonlinearities
(i.e., fis the identity f(x) = Xx)
more powerful than a one-layer network?

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W,f(Wx))) = Wx

why nonlinearities

Were

!

o

AN

credit for figure:
Christopher Olah

22

why nonlinearities”

23

/ “neuron”

+1

Layer L, Layer L,

a?) = (W x + Wi + Wiy x 1 1)

+1

Layer L,

agz) = (WZ(.:)X1 + WQ(;)XQ + W2(;)X3 ‘l‘bgl))

+1

Layer L,
Layer L,

(1)
(2) (W(1)x1+W§;)x2+ Wi,
ay = f| W

+1

Layer L,

we will be
learning the x’s
and the W’s!

+1

Layer L, Layer L,

o) = 8 = (WD + DD+ WD 1 12)

IN matrix-vector notation...

hw.u(x)

Layer L,

hy, = f(Wahy + b)

Layer L,

hy, = f(Wyx + b)

29

Dracula is a really good book!

neural
network

Positive

softmax function

® |et’s say | have 3 classes (e.g., positive, neutral,
negative) c - —

° %smmclass logreg with “cross product” features
etween input vector x and 3 output classes. for every

class c, i have an associated weight vector B¢, then

p.x
eC
P(y=C|X)=—%

é zk:l eﬂkx

softmax function

ex

g
T

X IS a vector

softmax(x) =

X;j IS dimension j of x

each dimension j of the softmaxed output
represents the probability of class

32

“bag of embeddings”

predict Positive affine transformation

\

_ eXp(WgL;))
22{:1 eXB(W (av))s

a really good ook
C1 Co C3 C4

= & lyeretdl ACL 2015

deep averaging networks

out = softmax(W; - z,)
7
zZ9 = f(LVE 2
nonlinear function

1= f(W7 - av)
N

affine transformation

l/l?\l [

a really good ook
CH1 Co C3 Cs

deep averaging networks
,*

out = softmax(W; - z,)

what are our model

parameters (i.€.,

a really good ook

CH Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do i update 1 ==r2)

these parameters
given the loss L7

a really good ook
C1 Co C3 C4

deep averaging networks
— [@ ()J\'enl,b%! out = softmax(W; - z,)

L = cross- entropy(out, ground-truth) ~T/

how do i update | BRI
these parameters
given the loss L7
/’Z
oL
— = 727 I aw—=SN"%
C

N | ./' \;\.

a really good ook
C1 Co C3 C4

deep averaging networks
L é\g = softmax(W; - z,)

chain rulelll
I I Z2=f(W2'21)

YOL _ 0L dout oz 0z dav.
z1 = f(W7 - av)

oc; dout dz, 0z, dav a
‘= =

good ook

C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL II 2o = f(Wa - 21)

= 777
oW,
z1 = f(W7 - av)

a really good ook
CH1 Co C3 Cs

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL oL oout dz,
oW, dout oz, ow, W
z1 = f(W1 - av)

?

a really good ook
C1 Co C3 C4

backpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL _ oL oout aZz aZl oav
oc; dout 9z 0z, dav dc,

oL oL dout oz,

oW, dout dz, oW,

41 Rumelhart et al., 1986

deep learning frameworks make

building NNs super easy!

/g Y lann
ae——a

set up the network

def _ init_ (self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300) :

super (DanModel, self)._ init_ ()

self.n_classes = n_classes

elf.vocab_size = vocab_size

elf.emb_dim = emb_dim

self.n_hidden_units = n_hidden_units

self.embeddings = nn.Eggedding(self.vocab_size,

self.emb_dim)

self.classif] = nn.Sequential (
(self.n_hidden_units,
self.n_hidden_units),

r(self.n_hidden_units,

1lf.n_classes))
elf._softm = nn.SoO ax ()

a

deep learning frameworks make

out = softmax(W, - z,)

av —=

z1=f(Wy1-av

n

&)

n

/7'\'\”

really

good

book

building NNs super easy!

do a forward pass to compute prediction

def forward(self, batch, probs=False):

text = batch[’text’][’"tokens’]

length = batch[’length’]

text_embed = self._word_embeddings (text)

Take the mean embedding. Since padding results
in zeros 1its safe to sum and divide by length

encoded = text_embed.sum (1)

encoded /= lengths.view (text_embed.size(0), -1)

Compute the network score predictions

logits = self.classifier (encoded)
if probs:

return self._softmax(logits)
else:

return logits

a

deep learning frameworks make
building NNs super easy!

out = softmax(Ws - z») do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. z1 = f(W7 - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
Z batch_loss = criterion (out,
av = batch[’ label’])
n batch_loss.backward ()

=1 —
/f \\ self.optimizer.step ()

really good book

a

deep learning frameworks make
building NNs super easy!

out = softmax(Ws - z») do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True):
self. model.train()

. z1 = f(W7 - av) for batch in batch_iter:
model.zero_grad()
out = model (batches)
n . batch_loss = criterion (out,
av = G batch[’label’])

n batch_loss.backward ()

=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!

Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)

A

overfitting

model power

—

46

L2 regularization Jd -

Z . (zefj 7) % b

=T m—— —
0 represents all of the model’s parameters!

f

vt f vl

penalizing their norm leads to smaller weights
we are constraining the parameter space 9(‘

we are putting a prior on our model
~ J,‘

\x\\/“i?
T Jost dety

47

Dropout for NNs

of neurons to O in the forward pass

X

Q.

-+

D ® @\

% g Dy

> D] KD

e K \r' Q) ’40 5' \»' o«‘zv "

= CENG %

e) ® WROR—L X
XD »o/‘s? »o/

O B XXX

- .:\’44.:\’4—.

© ,

NN
“'/.-'/.

[Srivastava et al., 2014]

(b) After applying dropout.

ndard Neural Net

ta

<
w2

N
<
~—

48

Why?
randomly set p% of neurons to O in the forward pass

—) s g tail

— S ClAWS /

—) iSchievous look

49

A few other tricks

® T[raining can be unstable! Therefore some
tricks.

e |nitialization — random small but reasonable
values can help.

e [ayer normalization (very important for some
recent architectures)
® Big, robust open-source libraries to let you
computation graphs, then run backprop for
you

e PyTorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP...)

50

