
Neural Networks
(INLP ch. 3)

some slides adapted from Mohit Iyyer, Jordan
Boyd-Graber, Richard Socher, Eisenstein (2019)

CS 490A, Fall 2020

Applications of Natural Language Processing

https://people.cs.umass.edu/~brenocon/cs490a_f20/

Brendan O’Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

Neural Networks in NLP
• Motivations:

• Word sparsity => denser word representations
• Nonlinearity

• Models
• BoE / Deep Averaging
• Convolutional NN

• Learning
• Backprop
• Dropout

2

mm
non

RearmA NN
a tromfnmyp.mg

q

The Second Wave: NNs in NLP

0

2

4

6

1980 2000 2020
year

p

• % of ACL paper titles with “connectionist/connectionism”, “parallel
distributed”, “neural network”, or “deep learning”

• https://www.aclweb.org/anthology/

1984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2000 2001 2002
 1 2 6 2 2 6 3 3 1 8 3 2 3 9 3 1 4
2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020
 3 3 4 1 1 1 1 2 8 13 39 99 199 184 296 245 46
2021
 1

a

A

Mrs Anu

R
g go

The Second Wave: NNs in NLP

4

NN Text Classification

• Goals:
• Avoid feature engineering
• Generalize beyond individual words

• General model architectures that work well
for many different datasets (and tasks!)

• For medium-to-large labeled training
datasets, deep learning methods generally
outperform feature-based LogReg

5

0 andembeddings

Preta.mg on unlabeled copra FEETkung

composing embeddings
• neural networks compose word embeddings into

vectors for phrases, sentences, and documents

 neural
network () =

really good booka

c E E I

bdsm s k

what is deep learning?

(input) = outputfIt nu

what is deep learning?

output

input

Neural NetworkD

9

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

10

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

inputs encoded as

real numbers

Output

f

ÇX

i

Wixi +b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

11

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

multiply inputs by

weights

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

12

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

add bias

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

13

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i

Wixi +b

å

Activation

f (z)⌘ 1

1+exp(�z)

pass through

nonlinear sigmoid

| UMD Multilayer Networks | 2 / 13

Perception

AE
swodhqgfn.az

m
hyqy Smash fantail

wise

14

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

NN: kind of like several intermediate logregs

gig

i

15

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

NN: kind of like several intermediate logregs

Effacer

EEoiEE o

it

16

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

NN: kind of like several intermediate logregs

a.k.a. feedforward network (see INLP on terminology)

ooo

e

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

72 linearSmash
Q
hoeflv.lk tb

2ymIirn
IRM n

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

hn = f(Whn−1 + b)

Nonlinear activations
• “Squash functions”!

19

50 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

where the function � is now applied elementwise to the vector of inner products,

�(⇥(x!z)x) = [�(✓(x!z)
1 · x),�(✓(x!z)

2 · x), . . . ,�(✓(x!z)
Kz

· x)]>. [3.8]

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,
through a“hidden layer” z. This is a feedforward neural network.2

3.2 Designing neural networks

There several ways to generalize the feedforward neural network.

3.2.1 Activation functions

If the hidden layer is viewed as a set of latent features, then the sigmoid function in Equa-
tion 3.9 represents the extent to which each of these features is “activated” by a given
input. However, the hidden layer can be regarded more generally as a nonlinear trans-
formation of the input. This opens the door to many other activation functions, some of
which are shown in Figure 3.2. At the moment, the choice of activation functions is more
art than science, but a few points can be made about the most popular varieties:

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in the previous chapter.

Jacob Eisenstein. Draft of November 13, 2018.

Better name: non-linearity

Ñ Logistic / Sigmoid

f (x) =
1

1+e�x
(1)

Ñ tanh

f (x) = tanh(x) =
2

1+e�2x
�1

(2)

Ñ ReLU

f (x) =

⇢
0 for x < 0

x for x � 0
(3)

Ñ SoftPlus: f (x) = ln(1+ex)

| UMD Multilayer Networks | 5 / 13

Ftii

I peas

fffgwdahlhlaers

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

uy

fh ff WzWiX
w

ni wz
onematrix

II xB rAhrainenff
W

IN NNcouleau any fuot.sn

No! You can just compile all of the layers into a single
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

why nonlinearities?

credit for figure:  
Christopher Olah

22

i
FE

23

Non-linearities (aka	“f”):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

1/18/1844

why nonlinearities?

24

Learn the features and the function

a(2)
1

= f
Ä
W (1)

11
x1 +W (1)

12
x2 +W (1)

13
x3 +b(1)

1

ä

| UMD Multilayer Networks | 6 / 13

“neuron”

25

Learn the features and the function

a(2)
2

= f
Ä
W (1)

21
x1 +W (1)

22
x2 +W (1)

23
x3 +b(1)

2

ä

| UMD Multilayer Networks | 6 / 13

26

Learn the features and the function

a(2)
3

= f
Ä
W (1)

31
x1 +W (1)

32
x2 +W (1)

33
x3 +b(1)

3

ä

| UMD Multilayer Networks | 6 / 13

27

Learn the features and the function

hW ,b(x) = a(3)
1

= f
Ä
W (2)

11
a(2)

1
+W (2)

12
a(2)

2
+W (2)

13
a(2)

3
+b(2)

1

ä

| UMD Multilayer Networks | 6 / 13

28

Learn the features and the function

hW ,b(x) = a(3)
1

= f
Ä
W (2)

11
a(2)

1
+W (2)

12
a(2)

2
+W (2)

13
a(2)

3
+b(2)

1

ä

| UMD Multilayer Networks | 6 / 13

we will be
learning the x’s
and the W’s!

in matrix-vector notation…

29

Learn the features and the function

a(2)
1

= f
Ä
W (1)

11
x1 +W (1)

12
x2 +W (1)

13
x3 +b(1)

1

ä

| UMD Multilayer Networks | 6 / 13

hL2
= f(W1x + b)

hL3
= f(W2hL2

+ b)

Dracula is a really good book!

neural
network

Positive

softmax function
• let’s say I have 3 classes (e.g., positive, neutral,

negative)
• use multiclass logreg with “cross product” features

between input vector x and 3 output classes. for every
class c, i have an associated weight vector βc , then

31

P(y = c |x) = eβcx

∑3
k=1 eβkxgo

9

32

softmax(x) = ex

∑j exj

x is a vector
xj is dimension j of x

each dimension j of the softmaxed output
represents the probability of class j

softmax function

“bag of embeddings”

really good book

predict Positive

a… …

av =
nX

i=1

ci
n

affine transformation

c1 c2 c3 c4

Iyyer et al., ACL 2015

p(y = c | x) = exp(W (av))
PK

k=1 exp(W (av))k

it 2r2
Id

IDs
a

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

as
one

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model
parameters (i.e.,

weights)?
or

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)
log outenbGBM

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ∂L
∂out

∂out
∂z2

∂z2
∂z1

∂z1
∂av

∂av
∂ci

chain rule!!!
a

y

B e at
dibs

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ???

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ∂L
∂out

∂out
∂z2

∂z2
∂W2

L = cross-entropy(out, ground-truth)

Wz

p

backpropagation
• use the chain rule to compute partial

derivatives w/ respect to each parameter
• trick: re-use derivatives computed for higher

layers to compute derivatives for lower layers!

41

∂L
∂ci

= ∂L
∂out

∂out
∂z2

∂z2
∂z1

∂z1
∂av

∂av
∂ci

∂L
∂W2

= ∂L
∂out

∂out
∂z2

∂z2
∂W2

Rumelhart et al., 1986

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization

def __init__(self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300):

super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network

page

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward

def forward(self, batch, probs=False):
text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
Take the mean embedding. Since padding results
in zeros its safe to sum and divide by length
encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

Compute the network score predictions
logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute
gradients by hand!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

46

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Regularization

ooh

L2 regularization

47

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

penalizing their norm leads to smaller weights
we are constraining the parameter space

we are putting a prior on our model

see ftp
strength

real

7 66

Tyne veal 7 onTune dorset data

Dropout for NNs

48

/HFWXUH���� ���-DQ�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ /HFWXUH���� ���-DQ�������

5HJXODUL]DWLRQ��'URSRXW
³UDQGRPO\�VHW�VRPH�QHXURQV�WR�]HUR�LQ�WKH�IRUZDUG�SDVV´

>6ULYDVWDYD�HW�DO�������@

randomly set p% of neurons to 0 in the forward pass

Why?

49

randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

X
X

X

p(cat)

A few other tricks
• Training can be unstable! Therefore some

tricks.
• Initialization — random small but reasonable

values can help.
• Layer normalization (very important for some

recent architectures)
• Big, robust open-source libraries to let you

computation graphs, then run backprop for
you

• PyTorch, Tensorflow (+ many higher-level
libraries on top; e.g. HuggingFace, AllenNLP…)

50

