
Neural Networks 
(INLP ch. 3)

some slides adapted from Mohit Iyyer, Jordan 
Boyd-Graber, Richard Socher, Eisenstein (2019)

CS 490A, Fall 2020

Applications of Natural Language Processing


https://people.cs.umass.edu/~brenocon/cs490a_f20/


Brendan O’Connor

College of Information and Computer Sciences


University of Massachusetts Amherst

 



Neural Networks in NLP
• Motivations: 

• Word sparsity => denser word representations 
• Nonlinearity 

• Models 
• BoE / Deep Averaging 
• Convolutional NN 

• Learning 
• Backprop 
• Dropout
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The Second Wave: NNs in NLP
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• % of ACL paper titles with “connectionist/connectionism”, “parallel 
distributed”, “neural network”, or “deep learning” 

• https://www.aclweb.org/anthology/
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The Second Wave: NNs in NLP
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NN Text Classification

• Goals: 
• Avoid feature engineering 
• Generalize beyond individual words 

• General model architectures that work well 
for many different datasets (and tasks!) 

• For medium-to-large labeled training 
datasets, deep learning methods generally 
outperform feature-based LogReg
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composing embeddings
• neural networks compose word embeddings into 

vectors for phrases, sentences, and documents

 neural 
network ( ) = 
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what is deep learning?

(input) = outputfIt nu



what is deep learning?
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Neural NetworkD
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

inputs encoded as

real numbers

Output
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

ÇX

i
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multiply inputs by

weights

Activation

f (z)⌘ 1

1+exp(�z)
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output
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add bias

Activation

f (z)⌘ 1

1+exp(�z)
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f
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Activation

f (z)⌘ 1

1+exp(�z)

pass through

nonlinear sigmoid
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

NN: kind of like several intermediate logregs
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

NN: kind of like several intermediate logregs
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

NN: kind of like several intermediate logregs

a.k.a. feedforward network (see INLP on terminology)
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what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation
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what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

hn = f(Whn−1 + b)



Nonlinear activations
• “Squash functions”!

19

50 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

where the function � is now applied elementwise to the vector of inner products,

�(⇥(x!z)x) = [�(✓(x!z)
1 · x),�(✓(x!z)

2 · x), . . . ,�(✓(x!z)
Kz

· x)]>. [3.8]

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,
through a“hidden layer” z. This is a feedforward neural network.2

3.2 Designing neural networks

There several ways to generalize the feedforward neural network.

3.2.1 Activation functions

If the hidden layer is viewed as a set of latent features, then the sigmoid function in Equa-
tion 3.9 represents the extent to which each of these features is “activated” by a given
input. However, the hidden layer can be regarded more generally as a nonlinear trans-
formation of the input. This opens the door to many other activation functions, some of
which are shown in Figure 3.2. At the moment, the choice of activation functions is more
art than science, but a few points can be made about the most popular varieties:

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in the previous chapter.

Jacob Eisenstein. Draft of November 13, 2018.

Better name: non-linearity

Ñ Logistic / Sigmoid

f (x) =
1

1+e�x
(1)

Ñ tanh

f (x) = tanh(x) =
2

1+e�2x
�1

(2)

Ñ ReLU

f (x) =

⇢
0 for x < 0

x for x � 0
(3)

Ñ SoftPlus: f (x) = ln(1+ex)

| UMD Multilayer Networks | 5 / 13
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is a multi-layer neural network with no nonlinearities  
(i.e., f is the identity f(x) = x) 

more powerful than a one-layer network?
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No! You can just compile all of the layers into a single 
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities  
(i.e., f is the identity f(x) = x) 

more powerful than a one-layer network?



why nonlinearities?

credit for figure:  
Christopher Olah
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Non-linearities (aka	“f”):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

1/18/1844

why nonlinearities?
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Learn the features and the function

a(2)
1

= f
Ä
W (1)

11
x1 +W (1)
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x2 +W (1)

13
x3 +b(1)

1

ä
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Learn the features and the function
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Learn the features and the function

a(2)
3

= f
Ä
W (1)

31
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Learn the features and the function

hW ,b(x) = a(3)
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Learn the features and the function
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we will be 
learning the x’s 
and the W’s!



in matrix-vector notation…
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Learn the features and the function
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= f(W1x + b)
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Dracula is a really good book!

neural 
network

Positive



softmax function
• let’s say I have 3 classes (e.g., positive, neutral, 

negative) 
• use multiclass logreg with “cross product” features 

between input vector x and 3 output classes. for every 
class c, i have an associated weight vector βc , then

31

P(y = c |x) = eβcx

∑3
k=1 eβkxgo

9
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softmax(x) = ex

∑j exj

x is a vector
xj is dimension j of x

each dimension j of the softmaxed output 
represents the probability of class j 

softmax function



“bag of embeddings”

really good book

predict Positive

a… …

av =
nX

i=1

ci
n

affine transformation

c1 c2 c3 c4

Iyyer et al., ACL 2015

p(y = c | x) = exp(W (av))
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deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

as
one



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model 
parameters (i.e., 

weights)?
or



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)
log outenbGBM



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ∂L
∂out

∂out
∂z2

∂z2
∂z1

∂z1
∂av

∂av
∂ci

chain rule!!!
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deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
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c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
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= ???

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)
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L = cross-entropy(out,  ground-truth)
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backpropagation
• use the chain rule to compute partial 

derivatives w/ respect to each parameter 
• trick: re-use derivatives computed for higher 

layers to compute derivatives for lower layers!

41

∂L
∂ci

= ∂L
∂out

∂out
∂z2

∂z2
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∂z1
∂av

∂av
∂ci

∂L
∂W2

= ∂L
∂out

∂out
∂z2

∂z2
∂W2

Rumelhart et al., 1986 



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization

def __init__(self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300):

super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make 
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network

page



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward

def forward(self, batch, probs=False):
text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
# Take the mean embedding. Since padding results
# in zeros its safe to sum and divide by length
encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

# Compute the network score predictions
logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make 
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



Deep Averaging Network

w1, . . . , wN

#
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ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()
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deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute 
gradients by hand!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)
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Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Regularization

ooh



L2 regularization
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Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

penalizing their norm leads to smaller weights  
we are constraining the parameter space 

we are putting a prior on our model

see ftp
strength

real
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Dropout for NNs
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randomly set p% of neurons to 0 in the forward pass



Why?
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randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

X
X

X

p(cat)



A few other tricks
• Training can be unstable! Therefore some 

tricks. 
• Initialization — random small but reasonable 

values can help. 
• Layer normalization (very important for some 

recent architectures) 
• Big, robust open-source libraries to let you 

computation graphs, then run backprop for 
you 

• PyTorch, Tensorflow  (+ many higher-level 
libraries on top; e.g. HuggingFace, AllenNLP…)

50


