Word embeddings (II)

CS 490A, Fall 2020

Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs490a_f20/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

including slides from Eisenstein (2019) and Jurafsky & Martin 3rd Ed.

• Back to demo - what's in these embeddings?

Word embeddings

- 2. Language Model: predict words from nearby words
- I. Input: Large textual corpus Language Model: predict words from SLOVE, SVD: factoricooccurrence matrix
 - word2vec: model is viewed as predicting one word's surrounding context words
- 3. Take out the vectors the model was forced to learn; use in downstream applications

in practice, we learn two different sets of embeddings (W for *target* words, C for context words), but throw away C

Window size C affects the nature of the similarity something like...

syntax <--> basic meaning <--> topical meaning

C = ±2 The nearest words to *Hogwarts*: • Sunnydale • Evernight C = ±5 The nearest words to *Hogwarts*: • Dumbledore • Malfoy halfblood

The moment one learns English, complications set in (Alfau, 1999)

Brown Clusters	{one}
WORD2VEC, $h = 2$	{moment, one, English, complications}
Structured WORD2VEC, $h = 2$	$\{(moment, -2), (one, -1), (English, +1), (complications, +2)\}$
Dependency contexts,	$\{(one, NSUBJ), (English, DOBJ), (moment, ACL^{-1})\}$

Alternate/mis- spellings

- Distributional methods are really good at this
- Brown clusters on Twitter: <u>http://</u> <u>www.cs.cmu.edu/~ark/TweetNLP/</u> <u>cluster_viewer.html</u>

Pre-trained embeddings

- Widely useful. But make sure you know what you're getting!
 - Examples: GLOVE, fasttext, word2vec, etc.
 - Is the corpus similar to what you care about?
 - Should you care about the data?

Evaluating embeddings

- Anecdotal inspection (not a real evaluation, but better than nothing; but seen next slides)
 - Intrinsic evaluations
 - Compare embeddings' word pair similarities to human judgments
 - TOEFL: "Levied is closest to imposed, believed, requested, correlated"
 - Numerical similarity judgments (e.g. Wordsim-353)
 - There some other attempts at this (word analogies) but IMO not trustworthy (e.g. <u>Linzen 2016</u>)
- Extrinsic evaluation: use embeddings in some task

PCA dim. reduction of selected embeddings

https://nlp.stanford.edu/projects/glove/

PCA dim. reduction of selected embeddings

https://nlp.stanford.edu/projects/glove/

Application: keyword expansion

- I have a few keywords for my task. Are there any I missed?
- Automated or semi-automated new terms from embedding neighbors
- 5 BARBVAND Canad wy Wood Other non-embedding lexical resources can do this too (e.g. WordNet), but word embeddings typically cover a lot of diverse vocabulary

Application: document embedding

72

+4000

 Instead of bag-of-words, can we derive a latent embedding of a document/sentence?

"> + Embreddings"

5 for

Arora et al. 201

 $w_i = i$ wz

wz=5mm wz=xbe

NyMorre

p()=

See

 $d_{29} = [5, 3, -2]$ dogs = [Jo1, 2,8, -1.2] $\leq A$ B = [2, 7]mv free No (ā X > S Si atp(w) 5 Ang M COURS

Exploratory usage

- Example: tweets about mass shootings (De
 - 1. Average word embeddings => tweet embedd
 - 2. Cluster tweets (kmeans)
 - 3. Interpret clusters' words (closest to centroid)

Торіс	10 Nearest Stems
news	break, custodi, #breakingnew, #updat, confirm,
(19%)	fatal, multipl, updat, unconfirm, sever
investigation	suspect, arrest, alleg, apprehend, custodi,
(9%)	charg, accus, prosecutor, #break, ap
shooter's identity	extremist, radic, racist, ideolog, label,
& ideology (11%)	rhetor, wing, blm, islamist, christian
victims & location	bar, thousand, california, calif, among,
(4%)	los, southern, veteran, angel, via
laws & policy	sensibl, regul, requir, access, abid, #gunreformnow,
(14%)	legisl, argument, allow, #guncontolnow
solidarity	affect, senseless, ach, heart, heartbroken
(13%)	sadden, faculti, pray, #prayer, deepest
remembrance	honor, memori, tuesday, candlelight, flown,
(6%)	vigil, gather, observ, honour, capitol
other	dude, yeah, eat, huh, gonna, ain,
(23%)	shit, ass, damn, guess

Table 1: Our eight topics (with their average proportions across events) and nearest-neighbor stem embeddings to the cluster centroids. Topic names were manually assigned based on inspecting the tweets.

