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e Back to demo - what’s in these embeddings?



Word embeddings
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® 2. language Model: predict words from nearby words

® GLOVE, SVYD: factorize the word-context
cooccurrence matrix

® word2vec: model is viewed as predicting one
word’s surrounding context words

® 3.Take out the vectors the model was forced to
learn; use in downstream applications



In practice, we learn two different sets of embeddings (W
for target words, C for context words), but throw away C
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Defining contexts
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The moment one lg@ms English, complications set in (Alfau, 1999)

Brown Clusters %"W

WORD2VEC, h = 2 {moment, one, English, comlzlications}

ured WORD2VEC, h = 2 {(moment, —2), (one, —1), (English, +1), (complications, +2)}
Dependency contexts, {(one,NSUBYJ), (English, DOBJ), (moment, ACL™1)}
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Alternate/mis- spellings

e Distributional methods are really good at this

e Brown clusters on Twitter: http://
www.cs.cmu.edu/~ark/TweetNLP/

cluster viewer.ntml




Pre-trained embeddings

e \Widely useful. But make sure you know what

you're gettin ~
A
. Examples , fasttext, word2vec, etc.
e Isthe corpus similar to what you care about?

e Should you care about the data”?



Evaluating embeddings

e Anecdotal inspection (not a real evaluation, but
INg; but seen next slides)
Intrinsic evaluations

;%- %ompare embeddings’ word pair similarities to
human judgments N~———

 TOEFL: “Levied is closest to imposed, believed,
‘fequested, Torrelated” — -

. %m\er[%;ﬁa\rity judgments (e.g. Wordsim-353)
« There some other attempts at this (word analogies)
\5 but IMO not trustworthy (e.g. Linzen 2016)

. thion: use embeddings in some
ask




PCA dim. reduction of selected embeddings
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https://nlp.stanford.edu/projects/glove/



PCA dim. reduction of selected embeddings
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Application: keyword expansion

e | have a few keywords for my task. Are there any | missed?
e Automated Or semi-auto d new terms from embedding neighbors

e Other non- embeddm

but word embeddlngs fypies Iy cover a lot of diverse vocabu ary
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¢ |nstead of bag-of-words, can we derive a latent
embedding of a document/sentence? 4’v7 (n\w’/\/
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Exploratory usage

e Example: tweets about mass shootings (Demszky et al. 2019)
1. Average word embeddings => tweet embeddings

% e Pammm—-
2. Cluster tweets (kmeans) v
B.ﬁus ers’ words (closest to centroid)

N o = —+ A
Topic 10 Nearest Stems

news K | break, custodi, #breakingnew, #up m;

(19%) fatal, multipl, updat unconfirm, sever

investigation S g
(9%) charg, accus, prosecutor #break ap
shooter’s identity extremist, T: ist; TTabel,

& ideology (11%) | rhetor, wing, blm, islamist, christian

victims & location | bar, thousand, california, calif, among,
(4%) los, southern, veteran, angel, via \>

laws & policy sensibl, regul, requir; access, abid, #gunreformnow,
(14%) legisl, argument, allow, #guncontolnow

solidarity affect, senseless, ach, heart, heartbroker

(13%) sadden, faculti, pray, #prayer, deep;sx/7
remembrance honor, memori, tuesday, candleTi?ht, flown,

(6%) vigil, gather, observ, honour, capitol

other dude, yeah, eat, huh, gonna, ain,

(23%) shit, ass, damn, guess

Table 1: Our eight topics (with their average propor-
tions across events) and nearest-neighbor stem embed-
dings to the cluster centroids. Topic names were man-
ually assigned based on inspecting the tweets.
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