Word embeddings

CS 490A, Fall 2020
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs490a f20/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

What do words mean?

First thought: look in a dictionary
http://www.oed.com/

Words, Lemmas, Senses, Definitions

Jemma
 pepper, π.
 ronultiation: drit. /'pєрә/ , U.S. /'pepər/

 definition senseForms: OE peopor (rare), OE pipcer (transmission erre), OE pipor, OF pipar (rare . Frequency (in current use):
Etymology: A borrowing from Latin. Etymon: Latin piper. < classical Latin piper, a loanwod < Indo-Aryan (as is ancient reek $\pi \% \pi \varepsilon \rho \iota$); compare Sar
I. The spice on the plant. the pepper plant, Piper nigrum season food, either whole or o, ound to poyder (often in association wit salt). Also (locally, chiefly with distinguishing word): a similar spice derived from the fruitg of certain other species of the genus Piper; the fruits themselves

The ground spic rom Piper nigrum cones in two forms, the more pungent black pepper, produced from black ppercorns, and the mild r white pepper, produced from white peppercorns: see black $a d j$. and. Special uses 5a, pepperc kn n. 1a, and white $a d j$. and $n .{ }^{1}$ Special uses $7 \mathrm{~b}(\mathrm{a})$.
2. 1

Relation: Synonymity

Synonyms have the same meaning in some or all contexts.

- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- Water / H20

Relation: Antonymy

Senses that are opposites with respect to one feature of meaning
Otherwise, they are very similar!
dark/light
hot/cold
short/long
up/down
fast/slow rise/fall in/out

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element of meaning
car, bicycle
cow, horse

Ask humans how similar two words are on scale of 1-10

wordl	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

in NLP, we commonly represent word types with vectors!

why use vectors to encode meaning?

- computing the similarity between two words (or phrases, or documents) is extremely useful for many NLP tasks
- Q: how tall is Mount Everest? A: The official height of Mount Everest is 29029 ft

Word similarity for plagiarism detection

MAINFRAMES

Mainframes are primarily referred to large computers with rapid, advanced processing capabilities that can execute and perform tasks equivalent to many Personal Computers (PCs) machines networked together. It is characterized with high quantity Random Access Memory (RAM), very large secondary storage devices, and high-speed processors to cater for the needs of the computers under its service.
Consisting of advanced components, mainframes have the capability of running multiple large applications required by many and most enterprises and organizations. This is one of its advantages. Mainframes are also suitable to cater for those applications (nronrams) or filec that are nf verv hinh

MAINFRAMES

Mainframes usually are referred those computers with fast, advanced processing capabilities that could perform by itself tasks that may require a lot of Personal Computers (PC)
Machines. Usually mainframes would have lots of RAMs, very large secondary storage devices, and very fast processors to cater for the needs of those computers under its service.
Due to the advanced components mainframes have, these computers have the capability of running multiple large applications required by most enterprises, which is one of its advantage. Mainframes are also suitable to cater for those applications or files that are of verv larae demand

visualizing semantic word change over time

~30 million books, 1850-1990, Google Books data

ML with text: one-hot vectors

- The bag-of-words representation
- represent each word as a vector of zeros with a single 1 identifying the index of the word

vocabulary
i
hate
love
the
movie
film

movie $=\langle 0,0,0,0,1,0\rangle$
film $=<0,0,0,0,0,1>$
what are the issues
of representing a
word this way?

all words are equally (dis)similar!

$$
\begin{aligned}
& \text { movie }=<0,0,0,0,1,0\rangle \\
& \text { film } \quad=<0,0,0,0,0,1>
\end{aligned}
$$

dot product is zero!
these vectors are orthogonal
how can we compute a vector representation such that the dot product correlates with word similarity?
could also support transfer learning. labeled datasets are very small, but unlabeled data is large...

Transfer learning

- Sparsity problems for traditional bag-ofwords
- Labeled datasets are small ... but unlabeled data is much bigger!

Distributional models of meaning
 = vector-space models of meaning
 = vector semantics

Intuitions: Zellig Harris (1954):

- "oculist and eye-doctor ... occur in almost the same environments"
- "If A and B have almost identical environments we say that they are synonyms."

Firth (1957):

- "You shall know a word by the company it keeps!"

Intuition of distributional word similarity

```
A bottle of tesguiino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.
```

- From context words humans can guess tesgüino means...

Intuition of distributional word similarity

```
A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.
```

- From context words humans can guess tesgüino means...
- an alcoholic beverage like beer
- Intuition for algorithm:
- Two words are similar if they have similar word contexts.

Word-word co-occurence matrix

Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first
well suited to programming on the digital for the purpose of gathering data and
pineapple
computer.
jam, a pinch each of,
and another fruit whose taste she likened
In finding the optimal R-stage policy from
necessary for the study authorized in the

apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0

cosine similarity of two vectors

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
$$

v_{i} is the count for word v in context i w_{i} is the count for word w in context i.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

$\operatorname{Cos}(v, w)$ is the cosine similarity of v and $w \quad \frac{\vec{a}||\vec{b}|}{}=\cos \theta$

But raw frequency is a bad representation

Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.
But overly frequent words like the, it, or they are not very informative about the context

Need a function that resolves this frequency paradox!

Pointwise Mutual Information
 $p(x, y)=p(x) R(y)$

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{\mathbb{C}} \frac{P(x, y)}{P(x) P(y)}=\log \frac{P(x \mid y)}{P(x)}
$$

PMI between two words: (Church \& Hanks 1989)
Do words x and y co-occur more than if they were independent?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

what is the range of values $\operatorname{PMI}\left(w_{1}, w_{2}\right)$ can take?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

$$
(-\infty, \infty)
$$

Positive $\operatorname{PMI}\left(w_{1}, w_{2}\right)$:

$$
\operatorname{PPMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\max ^{\left(\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}, 0\right)}
$$

dense word vectors

- issue: context vectors are long and sparse (why an issue?)

- model the meaning of a word as an (2) embedding in a vector space
- this vector space is commonly "low" dimensional (e.g., 100-500d).
- what is the dimensionality of a one-hot word representation?

$$
\text { Vocal size }=|V|
$$

- embeddings are real-valued vectors (not binary or counts)

Learning word embeddings from word-context data

- Sparse vectors
- Context co-occurrence frequencies/PPMI (Just count and normalize, no learning)
- Latent vectors [next]
- Matrix factorization
- word2vec,context prediction (SGNS)
- Latent hierarchy
- Brown clusters

Matrix factorization

 for other matrix factorization techniques)

Reconstruct the co-occurrence matrix

Singular Value Decomposition learns E, B

(embeddings)

Preserve pairwise distances between words i, j

$$
V_{i}^{\top} V_{j} \approx E_{i}^{\top} E_{j}
$$

Eigen Decomposition learns E
in practice, we learn two different sets of embeddings (W for target words, C for context words), but throw away C

Word embedding models

- GLOVE: one way to do that matrix factorization
- SVD: another
- word2vec: same thing, but depicted as predicting surrounding contexts

Defining contexts

Window size C affects the nature of the similarity something like...
syntax <-> basic meaning <-> topical meaning
$\mathrm{C}= \pm 2$ The nearest words to Hogwarts:

- Sunnydale
- Evernight
$\mathrm{C}= \pm 5$ The nearest words to Hogwarts:
- Dumbledore
- Malfoy
- halfblood

Defining contexts

The moment one learns English, complications set in (Alfau, 1999)

Brown Clusters	$\{$ one $\}$
WORD2VEC, $h=2$	$\{$ moment, one, English, complications $\}$
Structured WORD2VEC, $h=2$	$\{($ moment,-2$),($ one,-1$),($ English,+1$),($ complications,+2$)\}$
Dependency contexts,	$\left\{(\right.$ one, NSUBJ $),($ English, DOBJ $),\left(\right.$ moment, ACL $\left.\left.^{-1}\right)\right\}$

Alternate/mis- spellings

- Distributional methods are really good at this
- Brown clusters on Twitter: http:// www.cs.cmu.edu/~ark/TweetNLP/ cluster viewer.html

Pre-trained embeddings

- Widely useful. But make sure you know what you're getting!
- Examples: GLOVE, fasttext, word2vec, etc.
- Is the corpus similar to what you care about?
- Should you care about the data?

Evaluating embeddngs

- Intrinsic evaluations
- Compare embeddings' word pair similarities to human judgments
- TOEFL: "Levied is closest to imposed, believed, requested, correlated"
- Numerical similarity judgments (e.g. Wordsim-353)
- Word analogies and other evaluations possible too - though much controversy (see Linzen)
- Extrinsic evaluation: use embeddings in some task
https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

Extensions

- Alternative:Task-specific embeddings (always better...)
- Multilingual embeddings
- Better contexts: direction, syntax, morphology / characters...
- Phrases and meaning composition
- \quad vector(red cat) $=$ g(vector(red), vector(cat))
- vector(black cat) = g(vector(black), vector(cat))
- vector(hardly awesome) = $g($ vector(hardly), vector(awesome))
- (Averaging sometimes works ok...)

Embeddings reflect cultural bias

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In Advances in Neural Information Processing Systems, pp. 4349-4357. 2016.

Ask "Paris : France :: Tokyo : x"
${ }^{\circ} \mathrm{X}=\mathrm{Japan}$
Ask "father : doctor :: mother : x"
${ }^{\circ} \mathrm{x}=$ nurse
Ask "man : computer programmer :: woman : x"
${ }^{\circ} \mathrm{x}=$ homemaker
huge concern for NLP systems deployed in the real world that use embeddings!

Occupations		Adjectives	
Man	Woman	Man	Woman
carpenter	nurse	honorable	maternal
mechanic	midwife	ascetic	romantic
mason	librarian	amiable	submissive
blacksmith	housekeeper	dissolute	hysterical
retired	dancer	arrogant	elegant
architect	teacher	erratic	caring
engineer	cashier	heroic	delicate
mathematician	student	boyish	superficial
shoemaker	designer	fanatical	neurotic
physicist	weaver	aimless	attractive

Table 7: Top occupations and adjectives by gender in the Google News embedding.

Changes in framing: adjectives associated with Chinese

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644

1910	1950	1990
Irresponsible	Disorganized	Inhibited
Envious	Outrageous	Passive
Barbaric	Pompous	Dissolute
Aggressive	Unstable	Haughty
Transparent	Effeminate	Complacent
Monstrous	Unprincipled	Forceful
Hateful	Venomous	Fixed
Cruel	Disobedient	Active
Greedy	Predatory	Sensitive
Bizarre	Boisterous	Hearty

