Tagging: Classification in Context

CS 490A, Fall 2020

10/1/2020

Applications of Natural Language Processing <u>https://people.cs.umass.edu/~brenocon/cs490a_f20/</u>

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- Let's move to classifying within the text!
 - Tasks you can do yourself, with the right heuristics or logistic regression features (or other NLP models)
 Do it with a pretrained, off-the-shelf system as part of a larger system, especially for syntactic/semantic linguistic analyses

Part of speech tags

- Syntax = how words compose to form larger meaning-bearing units
- POS = syntactic categories for words
- YEAD
 You could substitute words syntactically valid sentence. • You could substitute words within a class and have a
 - Give information how words can combine.

NAUN

- I saw the dog
- I saw the cat
- I saw the {table, sky, dream, school, anger, ...}

Schoolhouse Rock: Conjunction Junction

https://www.youtube.com/watch?v=ODGA7ssL-6g&index=1&list=PL6795522EAD6CE2F7

Part of speech tagging

• I saw the fire today

ambige Noun Verb

Open vs closed classes

Why do we want POS?

- Useful for many syntactic and other NLP tasks.
 - Phrase identification ("chunking")
 - Named entity recognition (names = proper nouns... or are they?)
 - Syntactic/semantic dependency parsing
 - Sentiment
- Either as features or heuristic filtering
- Esp. useful when not much training data

POS patterns: simple noun phrases

• Quick and dirty noun phrase identification

http://brenocon.com/JustesonKatz1995.pdf http://brenocon.com/handler2016phrases.pdf

Grammatical structure: Candidate strings are those multi-word noun phrases that are specified by the regular expression $((A | N)^+ | ((A | N)^*(NP)^?)(A | N)^*)N$,

POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, useful for sentiment analysis.

		Table 2. An example the author has classifi	of the processing of ed as recommended	a review that
Table 1. Patterns of tags for extracting two-word phrases from reviews.		Extracted Phrase	Part-of-Speech Tags	Semantic Orientation
	Third Word (Not Extracted)	online experience low fees	JJ NN JJ NNS	2.253 0.333
2. RB, RBR, or JJ RBS 3. JJ H	anything not NN nor NNS not NN nor NNS not NN nor NNS	local branch small part online service printable version direct deposit	JJ NN JJ NN JJ NN JJ NN JJ NN	0.421 0.053 2.780 -0.705 1.288
	nything	well other inconveniently located	RB JJ RB VBN	0.237 -1.541
		other bank true service	JJ NN JJ NN	-0.850 -0.732

(plus co-occurrence information)

Named entity recognition

SOCCER- [PER BLINKER] BAN LIFTED .
[LOC LONDON] 1996-12-06 [MISC Dutch] forward
[PER Reggie Blinker] had his indefinite suspension
lifted by [ORG FIFA] on Friday and was set to make
his [ORC Sheffield Wednesday] comeback against
[ORG Liverpoor] on Saturday . [PER Blinker] missed
his club's last two games after [ORG FIFA] slapped a
worldwide ban on him for appearing to sign contracts for
both [ORG Wednesday] and [ORG Udinese] while he was
playing for [ORG Feyenoord].

Figure 1: Example illustrating challenges in NER.

PER Jons LOC ation ORG anizothen

Useful features for a tagger

- Key sources of information:
 - I. The word itself
 - 2. Word-internal characters
 - 3. Nearby words in a context window
 - Context window features are used for ALL tagging tasks!

Features for NER/POS

- Word-based features
 - Word itself
 Word shape
 Contextual variants: versions of these at position t-1, t-2, t-3 ... t+1, t
 +2, t+3 ...
- External lexical knowledge "ht-at-t_t"
 - Gazetteer features: Does word/phrase occur in a list of known names?
 - Other hand-built lexicons
 - Word embeddings (next week)

Gazetteers example

1)People: people, births, deaths. Extracts 494,699 Wikipedia titles and 382,336 redirect links. 2)Organizations: cooperc A atives, federations, teams, clubs, departments, organizations, organisations, banks, legislatures, record labels, constructors, manufacturers, ministries, ministers, military units, military formations, universities, radio stations, newspapers, broadcasters, political parties, television networks, companies, businesses, agencies. Extracts 124,403 titles and 130,588 redirects. 3)Locations: airports, districts, regions, countries, areas, lakes, seas, oceans, towns, villages, parks, bays, bases, cities, landmarks, rivers, valleys, deserts, locations, places, neighborhoods. Extracts 211,872 titles and 194,049 redirects. 4) Named Objects: aircraft, spacecraft, tanks, rifles, weapons, ships, firearms, automobiles, computers, boats. Extracts 28,739 titles and 31,389 redirects. 5)Art Work: novels, books, paintings, operas, plays. Extracts 39,800 titles and 34037 redirects. 6)Films: films, telenovelas, shows, musicals. Extracts 50,454 titles and 49,252 redirects. 7)Songs: songs, singles, albums. Extracts 109,645 titles and 67,473 redirects. 8) Events: playoffs, championships, races, competitions, battles. Extracts 20,176 titles and 15,182 redirects.

Nilespedia

Mut is a posedace = Most Frequent Class - Simere élisés pretrand Model