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Announcements

• HW2 

• Today 
• 1. Agreement rates 
• 2. Evaluation metrics 
• 3. Statistical testing
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Annotations quality

• Measurement theory from social sciences 
asks about 

• Validity: is it right? 
• Do the annotations correspond to the deeper 

concept you care about?  (“Construct validity”)   
For your application, analysis goal, etc. 

• Reliability: is it repeatable?
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Reliability
• The annotations you got - are they 

repeatable? 
• How much do two humans agree on labels? 

• Simple quantitative metric!  Next slide. 
• Difficulty of task.  Human training?  Human 

motivation/effort? 
• Goal: get the human performance “upper 

bound” 
• Does human agreement rate represent an upper 

bound for machine performance?
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Measuring agreement rates
• Assume two annotators both judge a set of items 
• Agreement rate: proportion of time two annotators agree 

• i.e., accuracy of one annotator matching the other 
• Chance-adjusted agreement 

• If some classes predominate, raw agreement rate may be misleading  
• Many similar measures for this: Cohen’s kappa, Krippendorff’s alpha, 

etc. 
• Cohen’s kappa
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privacy. In these cases, one solution is to publicly release stand-off annotations,
which contain links to document identifiers. The documents themselves can be re-
leased under the terms of a licensing agreement, which can impose conditions on
how the data is used. It is important to think through the potential consequences of
releasing data: people may make personal data publicly available without realizing
that it could be redistributed in a dataset and publicized far beyond their expecta-
tions (boyd and Crawford, 2012).

Measuring inter-annotator agreement

To measure the replicability of annotations, a standard practice is to compute the extent to
which annotators agree with each other. If the annotators frequently disagree, this casts
doubt on either their reliability or on the annotation system itself. For classification, one
can compute the frequency with which the annotators agree; for rating scales, one can
compute the average distance between ratings. These raw agreement statistics must then
be compared with the rate of agreement by chance — the expected level of agreement that
would be obtained between two annotators who ignored the data.

Cohen’s Kappa is widely used for quantifying the agreement on discrete labeling
tasks (Cohen, 1960; Carletta, 1996),11

 =
agreement � E[agreement]

1 � E[agreement]
. [4.11]

The numerator is the difference between the observed agreement and the chance agree-
ment, and the denominator is the difference between perfect agreement and chance agree-
ment. Thus,  = 1 when the annotators agree in every case, and  = 0 when the annota-
tors agree only as often as would happen by chance. Various heuristic scales have been
proposed for determining when  indicates “moderate”, “good”, or “substantial” agree-
ment; for reference, Lee and Narayanan (2005) report  ⇡ 0.45 � 0.47 for annotations
of emotions in spoken dialogues, which they describe as “moderate agreement”; Stolcke
et al. (2000) report  = 0.8 for annotations of dialogue acts, which are labels for the pur-
pose of each turn in a conversation.

When there are two annotators, the expected chance agreement is computed as,

E[agreement] =
X

k

P̂r(Y = k)2, [4.12]

where k is a sum over labels, and P̂r(Y = k) is the empirical probability of label k across
all annotations. The formula is derived from the expected number of agreements if the
annotations were randomly shuffled. Thus, in a binary labeling task, if one label is applied
to 90% of instances, chance agreement is .92 + .12 = .82.

11 For other types of annotations, Krippendorf’s alpha is a popular choice (Hayes and Krippendorff, 2007;
Artstein and Poesio, 2008).

Jacob Eisenstein. Draft of November 13, 2018.
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Annotation process
• To pilot a new task, requires an iterative process 

• Look at data to see what’s possible 
• Conceptualize the task, try it yourself 
• Write annotation guidelines 
• Have annotators try to do it. Where do they disagree? 

What feedback do they have? 
• Revise guidelines and repeat 

• If you don’t do this, your labeled data will have lots 
of unclear, arbitrary, and implicit decisions inside of 
it 

• Annotated data is at the heart of real-world 
NLP applications!!!!
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Hard Classification Metrics

• Many different metrics can be calculated from 

the confusion matrix

8http://brenocon.com/confusion_matrix_diagrams.pdf
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Confusion matrix metrics
These are conditional probabilities from counts 
on a binary confusion matrix.
Diagrams show the conditioning population and 
the quantity for the condprob numerator.
Odds notation  X:Y≡X/(X+Y); and 1-(X:Y)=Y:X
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Confidence Tradeoffs
Classifier says YES if confidence in '1' is greater than a threshold t.  Varying the threshold trades off between FPs versus FNs. For any one metric, you 
can make it arbitrarily good by being either very liberal or very conservative.  Therefore you are often interested in a pair of metrics: one that cares 
about FPs, and one that cares about FNs.  Here are two pairings that are popular.  By changing the confidence threshold, you get a curve of them.

Truth-conditional metrics
If you take the same classifier and 
apply it to a new dataset with different 
ground truth population proportions,
these metrics will stay the same.
Makes sense for, say, medical tests.

Prediction-conditional metrics
These are properties jointly of the classifier 
and dataset.  For example,
p(person has disease | test says "positive")
= Precision = TP/(TP+FP)

Sens-Spec Tradeoff:  ROC curve
(sens, spec) = (TP:FN, TN:FP)
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Sens-Prec Tradeoff:  Precision-Recall curve
(prec, rec) = (TP:FP, TP:FN)
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Ignores true negatives: 
makes sense for needle-
in-haystack problems, 
where TNs dominate and 
are uninteresting.

Brendan O'Connor
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http://brenocon.com/confusion_matrix_diagrams.pdf (.graffle)

There are also summary stats that require a specific threshold -- or you can use if you don't have confidences -- 
but have been designed to attempt to care about both FP and FN costs.

AUC area under the ROC curve.  (a.k.a. ROCAUC, AUROC)
Semantics: prob the classifier correctly orders a randomly 
chosen pos and neg example pair.  (Similar to Wilcoxon-Mann-
Whitney or Kendall's Tau).  Neat analytic tricks with convex 
hulls.

PRAUC: area under the PR curve.
No semantics that I know of.
Similar to mean average precision. See also precision@K.
PR Breakeven: find threshold where prec=rec, and report that value.

F-score: harmonic average of prec and rec.
Usually F1 is used: the unweighted harmonic mean.
F1 = 2*P*R / (P+R)
No semantics that I know of.
Corresponds to curvy isoclines in PR space.

There are several summary statistics to make a FP-FN metric pairing invariant to the choice of threshold.

Balanced accuracy: arithmetic average of sens and spec.
This is accuracy if you chose among pos and neg classes with 
equal prob each -- i.e. a balanced population.
[In contrast, AUC is a balanced rank-ordering accuracy.]
Corresponds to linear isoclines in ROC space.

Accuracy = p(correct) = (TP+TN) : (FN+FP)
But often you want to know about FN's 
versus FP's, thus all these metrics.

References
Diagrams based on William Press's slides: http://www.nr.com/CS395T/lectures2008/17-ROCPrecisionRecall.pdf
Listings of many metrics on: http://en.wikipedia.org/wiki/Receiver_operating_characteristic
Fawcett (2006), "An Introduction to ROC analysis": http://people.inf.elte.hu/kiss/13dwhdm/roc.pdf
Manning et al (2008) "Intro to IR", e.g. http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
Hypothesis testing: Casella and Berger, "Statistical Inference" (ch 8); also Wasserman, "All of Statistics" (ch 10)

Property of classifier Property of dataset

Classical Frequentist Hypothesis Testing
Task is to detect null hypothesis violations.
Define "reject null" as a positive prediction.
 - Type I error = false positive.  Size (α) = 1-Specificity
 - Type II error = false negative.  Power (β) = Sensitivity
and p-value = 1-Specificity, kind of.  
"Significance" refers to either p-value or size (i.e. FPR)

The point is to give non-Bayesian probabilistic semantics to a single test, so these 
relationships are a little more subtle.  For example, size is a worst-case bound on 
specificity, and a p-value is for one example: prob the null could generate a test statistic 
at least as extreme (= size of the strictest test that would reject the null on that example).
When applied to a single test, PPV and NPV are not frequentist-friendly concepts since 
they depend on priors.  But in multiple testing, they can be frequentist again; e.g. 
Benjamini-Hochberg bounds expected PPV by assuming PriorNeg=0.999999.
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Multiclass setting: each class has it own prec/rec/f1.
Macroaveraged F1: mean of each class' F1.
    Cares about rare classes as much as common classes.
Microaveraged F1: take total TP,FP,FN to calculate prec/rec/f1.
    Cares more about highly prevalent classes.

Alternatively, directly use predicted probabilities without thresholding or confusion matrix:
Cross-entropy (log-likelihood) or Brier score loss (squared error).

Balanced accuracy = macroaveraged recall

Accuracy = microavg rec = microavg prec = microavg f1

• Many different metrics can be calculated from 
the confusion matrix
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Trading off FPs vs. FNs
• All ML-based classifiers use a confidence threshold 

• Trades off between false positive vs. negatives 
• In NLP, Precision and Recall are usually used - ignore TNs (makes sense for 

a rare class) 
• Which matters more?  Application-specific! 
• Arbitrary, but common, answer: F1 score 

• Harmonic mean and set overlap interpretations

9 https://brenocon.com/blog/2012/04/f-scores-dice-and-jaccard-set-similarity/
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Other evaluation metrics
• Probabilistic predictions: you can evaluate log-likelihood on the test set, too! 
• Multiclass: do you care about rare classes as much as common classes? 

• Care about examples equally: “micro-averaged” prec/rec/f1 
directly use overall TN/FP/FN counts 

• Care about classes equally:   “macro-averaged” prec/rec/f1 
unweighted mean of per-class metrics 

• Precision-Recall Curve: each decision threshold defines a particular 
precision/recall tradeoff.  Area Under PR Curve is one of several threshold-
free metrics (ranking metrics)

10
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Statistical variability in NLP
• How to trust experiment results, given 

many sources of variability? 
• If you ____, would you get the same 

result? 
• If you sampled the text data again 

• randomness in data sampling 
• If you collected annotations again 

• randomness in human behavior 
• If you ran your algorithm again 

• randomness in computational model  
(neither NB or logreg have this…)
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Statistical Testing

• A way to formalize analysis of variability 
• Vast majority of work only looks at resampling 

textual examples 
• Two types of analyses 

• p-values for Null Hypothesis Testing 
• one method: binomial test 

• confidence intervals 
• one method: bootstrapping

13

me



Null hypothesis test

• Must define a null hypothesis you wish to ~disprove

• pvalue = Probability of a result as least as extreme, if 
the null hypothesis was active

• Example: paired testing of classifiers with exact 
binomial test (R: binom.test)
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3.4. EVALUATING CLASSIFIERS 77

Figure 3.5: Probability mass function for the binomial distribution. The pink highlighted
areas represent the cumulative probability for a significance test on an observation of
k = 10 and N = 30.

We write k ⇠ Binom(✓, N) to indicate that k is drawn from a binomial distribution, with
parameter N indicating the number of random “draws”, and ✓ indicating the probability
of “success” on each draw. The probability mass function (PMF) of the binomial distri-
bution is,

pBinom(k; N, ✓) =

✓
N

k

◆
✓
k
(1 � ✓)

N�k
, [3.9]

with ✓
k representing the probability of the k successes, (1 � ✓)

N�k representing the prob-
ability of the N � k unsuccessful draws. The expression

�
N

k

�
=

N !
k!(N�k)! is a binomial

coefficient, representing the number of possible orderings of events; this ensures that the
distribution sums to one over all k 2 {0, 1, 2, . . . , N}.

Under the null hypothesis, ✓ =
1
2 : when the classifiers disagree, they are each equally

likely to be right. Now suppose that among N disagreements, c1 is correct only k <
N

2 times. The probability of c1 being correct k or fewer times is the one-tailed p-value,
because it is computed from the area under the binomial probability mass function from
0 to k, as shown in the left tail of Figure 3.5. This cumulative probability is computed as
a sum over all values i  k,

Pr
Binom

✓
count(ŷ(i)2 = y

(i)
6= ŷ

(i)
1 )  k; N, ✓ =

1

2

◆
=

kX

i=0

pBinom

✓
i; N, ✓ =

1

2

◆
. [3.10]

The one-tailed p-value applies only to the asymmetric null hypothesis that c1 is at least
as accurate as c2. To test the two-tailed null hypothesis that c1 and c2 are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 3.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

(c) Jacob Eisenstein 2018. Work in progress.
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(i)
1 )  k; N, ✓ =

1

2

◆
=

kX

i=0

pBinom

✓
i; N, ✓ =

1

2

◆
. [3.10]

The one-tailed p-value applies only to the asymmetric null hypothesis that c1 is at least
as accurate as c2. To test the two-tailed null hypothesis that c1 and c2 are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 3.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

(c) Jacob Eisenstein 2018. Work in progress.

pvalue redaces
below

Null Hypo5 theclassifiers hare Dameperfa
observedstat
I

8 2 who

an3532or
cover



The Bootstrap
• One of many tests - very flexible and conceptually sound (but use others as 

appropriate!) 
• Idea: We want to know how much different another sampled dataset could have 

been.  Simulate this by drawing a new dataset, with replacement, from your 
current one! 

• The distribution of bootstrapped evaluation scores is of interest and provides e.g. a 
95% confidence interval: its [2.5%ile, 97.5%ile] 

• You can use any evaluation method you want! 
• Weird things like F1 score, AUPRC, etc. 
• The difference in scores between two different classifiers on the same data
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Algorithm 7 Bootstrap sampling for classifier evaluation. The original test set is
{x(1:N),y(1:N)

}, the metric is �(·), and the number of samples is M .

procedure BOOTSTRAP-SAMPLE(x(1:N),y(1:N), �(·),M )
for t 2 {1, 2, . . . ,M} do

for i 2 {1, 2, . . . , N} do
j ⇠ UniformInteger(1, N)
x̃(i)
 x(j)

ỹ(i)
 y(j)

d(t)  �(x̃(1:N), ỹ(1:N))

return {d(t)}M
t=1

As the number of bootstrap samples goes to infinity, M ! 1, the bootstrap estimate
is increasingly accurate. A typical choice for M is 104 or 105; larger numbers of samples
are necessary for smaller p-values. One way to validate your choice of M is to run the test
multiple times, and ensure that the p-values are similar; if not, increase M by an order of
magnitude. This is a heuristic measure of the variance of the test, which can decreases
with the square root

p
M (Robert and Casella, 2013).

4.4.4 *Multiple comparisons

Sometimes it is necessary to perform multiple hypothesis tests, such as when compar-
ing the performance of several classifiers on multiple datasets. Suppose you have five
datasets, and you compare four versions of your classifier against a baseline system, for a
total of 20 comparisons. Even if none of your classifiers is better than the baseline, there
will be some chance variation in the results, and in expectation you will get one statis-
tically significant improvement at p = 0.05 = 1

20 . It is therefore necessary to adjust the
p-values when reporting the results of multiple comparisons.

One approach is to require a threshold of ↵

m
to report a p value of p < ↵ when per-

forming m tests. This is known as the Bonferroni correction, and it limits the overall
probability of incorrectly rejecting the null hypothesis at ↵. Another approach is to bound
the false discovery rate (FDR), which is the fraction of null hypothesis rejections that are
incorrect. Benjamini and Hochberg (1995) propose a p-value correction that bounds the
fraction of false discoveries at ↵: sort the p-values of each individual test in ascending
order, and set the significance threshold equal to largest k such that pk  k

m
↵. If k > 1, the

FDR adjustment is more permissive than the Bonferroni correction.

Under contract with MIT Press, shared under CC-BY-NC-ND license.


