
text classification with
naive Bayes

CS 490A, Fall 2020
Applications of Natural Language Processing

https://people.cs.umass.edu/~brenocon/cs490a_f20/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

• Thanks for your exercises!
• Type/token ratio def’n

• HW1 released today: Naive Bayes text
classification!

• Due Friday, 9/18
• Python tutorial in Tomas’ OH

• Wed 11:15am to 12:45pm
• See Piazza “logistics” post, as always

• Schedule: https://people.cs.umass.edu/
~brenocon/cs490a_f20/schedule.html

2

text classification

• input: some text x (e.g., sentence, document)
• output: a label y (from a finite label set)
• goal: learn a mapping function f from x to y

3

text classification

• input: some text x (e.g., sentence, document)
• output: a label y (from a finite label set)
• goal: learn a mapping function f from x to y

4

fyi: basically every NLP problem
reduces to learning a mapping function

with various definitions of x and y!

5

problem x y

sentiment analysis text from reviews (e.g.,
IMDB) {positive, negative}

topic identification documents {sports, news, health, …}

author identification books {Tolkien, Shakespeare,
…}

spam identification emails {spam, not spam}

… many more!

6

input x:

label y: spam or not spam

we’d like to learn a mapping f such that
f(x) = spam

f can be hand-designed rules

• if “won $10,000,000” in x, y = spam
• if “CS490A Fall 2020” in x, y = not spam

7

what are the drawbacks of this method?

f can be learned from data

• given training data (already-labeled x,y pairs)
learn f by maximizing the likelihood of the
training data

• this is known as supervised learning

8

9

x (email text) y (spam or not spam)

learn how to fly in 2 minutes spam

send me your bank info spam

CS585 Gradescope consent poll not spam

click here for trillions of $$$ spam

… ideally many more examples!

x (email text) y (spam or not spam)

CS585 important update not spam

ancient unicorns speaking english!!! spam

training data:

heldout data:

10

x (email text) y (spam or not spam)

learn how to fly in 2 minutes spam

send me your bank info spam

CS585 Gradescope consent poll not spam

click here for trillions of $$$ spam

… ideally many more examples!

x (email text) y (spam or not spam)

CS585 important update not spam

ancient unicorns speaking english!!! spam

training data:

heldout data:

learn mapping function on training data,
measure its accuracy on heldout data

0

Jpy ink

probability review
• random variable takes value with

probability ; shorthand
• joint probability:
• conditional probability:

• when does

11

p(X = x, Y = y)
p(x)

X x
p(X = x)

p(X = x ∣ Y = y)

= p(X = x, Y = y)
p(Y = y)

p(X = x, Y = y) = p(X = x) ⋅ p(Y = y) ?

probability of some input text
• goal: assign a probability to a sentence

• sentence: sequence of tokens

• where is the vocabulary (types)

• some constraints:

12

p(w1, w2, w3, …, wn)
p(the cat sleeps) > p(cat sleeps the)

wi ∈ V V

for any w ∈ V, p(w) ≥ 0

∑
w∈V

p(w) = 1

non-negativity

probability
distribution,
sums to 1

how to estimate p(sentence)?

13

p(w1, w2, w3, …, wn)

we could count all occurrences of the sequence

in some large dataset and normalize by the number of
sequences of length n in that dataset

w1, w2, w3, …, wn

how many parameters would this require?

chain rule

14

naive Bayes’ conditional indepedence
assumption:

the probability of generating a word is
independent of all other words 

(conditional on doc class)

this is called the unigram probability.
what are its limitations?

=

p(w1, w2, w3, … wn | y=k)
= p(w1 | y=k) p(w2 , w1 | y=k) p(w3 | w1, w2) …

toy sentiment example

• vocabulary V: {i, hate, love, the, movie, actor}
• training data (movie reviews):

• i hate the movie
• i love the movie
• i hate the actor
• the movie i love
• i love love love love love the movie
• hate movie
• i hate the actor i love the movie

15

labels:
positive
negative

bag-of-words representation

16

i hate the actor i love the movie

bag-of-words representation

17

i hate the actor i love the movie

word count

i 2

hate 1

love 1

the 2

movie 1

actor 1

bag-of-words representation

18

i hate the actor i love the movie

word count

i 2

hate 1

love 1

the 2

movie 1

actor 1

equivalent representation to:
actor i i the the love movie hate

naive Bayes

• represents input text as a bag of words
• assumption: each word is independent of all

other words
• given labeled data, we can use naive Bayes

to estimate probabilities for unlabeled data
• goal: infer probability distribution that

generated the labeled data for each label

19

20

which of the below distributions most
likely generated the positive reviews?

0

0.25

0.5

0.75

1

i hate love the movie actor
0

0.25

0.5

0.75

1

i hate love the movie actor

… back to our reviews

21

p(i love love love love love the movie)
= p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie)

0

0.25

0.5

0.75

1

i hate love the movie actor
0

0.25

0.5

0.75

1

i hate love the movie actor

= 5.95374181e-7 = 1.4467592e-4

22

… back to our reviews

23

p(i love love love love love the movie)
= p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie)

0

0.25

0.5

0.75

1

i hate love the movie actor
0

0.25

0.5

0.75

1

i hate love the movie actor

= 5.95374181e-7 = 1.4467592e-4

true

logs to avoid underflow

24

p(w1) ⋅ p(w2) ⋅ p(w3) … ⋅ p(wn)
can get really small esp. with large n2 MY pay

Ti Hwi Ei log Hwi

logs to avoid underflow

25

p(w1) ⋅ p(w2) ⋅ p(w3) … ⋅ p(wn)

log∏p(wi) = ∑ log p(wi)

can get really small esp. with large n

p(i) ⋅ p(love)5 ⋅ p(the) ⋅ p(movie) = 5.95374181e-7
log p(i) + 5 log p(love) + log p(the) + log p(movie)

= -14.3340757538

PECO I
log 1 0

If

class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})

26

p(y |x) = p(y) ⋅ P(x |y)
p(x)

our predicted label is the one with the highest
posterior probability

A

posterior Prior
likelihood

w.io 7w Normalizer

j frsng.axpb.IS aatyAxpCy pCx1y
w

PKEDICTION ummm posterior

remember the independence assumption!

27

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)maximum a
posteriori

(MAP) class

an

and

omgmga p IT P wily
ansng lo e TE lg Pcwb

Tmm
e.g I Pos

computing the prior…

28

• i hate the movie
• i love the movie
• i hate the actor
• the movie i love
• i love love love love love the movie
• hate movie
• i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels
we can estimate it from the data by simply counting…

label y count p(Y=y) log(p(Y=y))

positive 3 0.43 -0.84

negative 4 0.57 -0.56

c

a w

computing the likelihood…

29

word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

q

g

For3

30

word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

new review Xnew: love love the movie

log p(Xnew |positive) = ∑
w∈Xnew

log p(w |positive) = − 4.96

log p(Xnew |negative) = − 8.912,000Os

posterior probs for Xnew

31

log p(positive |Xnew) ∝ log P(positive) + log p(Xnew |positive)
= − 0.84 − 4.96 = − 5.80

log p(negative |Xnew) ∝ − 0.56 − 8.91 = − 9.47

What does NB predict?

log error to
proportional to

KITAI

pg R To

f Pos

what if we see no positive training documents
containing the word “awesome”?

32

p(awesome |positive) = 0

33

what happens if we do
add-α smoothing as α increases?

unsmoothed P(wi |y) = count(wi, y)
∑w∈V count(w, y)

Add-1 (Laplace) smoothing

smoothed P(wi |y) = count(wi, y) + 1
∑w∈V count(w, y) + |V |

dog TOFT
inaT wTIEIya.yrelative free

oafooooo
matrons

000
fended

se
II'Iooooo

Example

34

Thumbs up? Sentiment Classification using Machine Learning
Techniques

Bo Pang and Lillian Lee
Department of Computer Science

Cornell University
Ithaca, NY 14853 USA

{pabo,llee}@cs.cornell.edu

Shivakumar Vaithyanathan
IBM Almaden Research Center

650 Harry Rd.
San Jose, CA 95120 USA
shiv@almaden.ibm.com

Abstract

We consider the problem of classifying doc-
uments not by topic, but by overall senti-
ment, e.g., determining whether a review
is positive or negative. Using movie re-
views as data, we find that standard ma-
chine learning techniques definitively out-
perform human-produced baselines. How-
ever, the three machine learning methods
we employed (Naive Bayes, maximum en-
tropy classification, and support vector ma-
chines) do not perform as well on sentiment
classification as on traditional topic-based
categorization. We conclude by examining
factors that make the sentiment classifica-
tion problem more challenging.

1 Introduction

Today, very large amounts of information are avail-
able in on-line documents. As part of the effort to
better organize this information for users, researchers
have been actively investigating the problem of au-
tomatic text categorization.

The bulk of such work has focused on topical cat-
egorization, attempting to sort documents accord-
ing to their subject matter (e.g., sports vs. poli-
tics). However, recent years have seen rapid growth
in on-line discussion groups and review sites (e.g.,
the New York Times’ Books web page) where a cru-
cial characteristic of the posted articles is their senti-
ment, or overall opinion towards the subject matter
— for example, whether a product review is pos-
itive or negative. Labeling these articles with their
sentiment would provide succinct summaries to read-
ers; indeed, these labels are part of the appeal and
value-add of such sites as www.rottentomatoes.com,
which both labels movie reviews that do not con-
tain explicit rating indicators and normalizes the
different rating schemes that individual reviewers

use. Sentiment classification would also be helpful in
business intelligence applications (e.g. MindfulEye’s
Lexant system1) and recommender systems (e.g.,
Terveen et al. (1997), Tatemura (2000)), where user
input and feedback could be quickly summarized; in-
deed, in general, free-form survey responses given in
natural language format could be processed using
sentiment categorization. Moreover, there are also
potential applications to message filtering; for exam-
ple, one might be able to use sentiment information
to recognize and discard “flames”(Spertus, 1997).

In this paper, we examine the effectiveness of ap-
plying machine learning techniques to the sentiment
classification problem. A challenging aspect of this
problem that seems to distinguish it from traditional
topic-based classification is that while topics are of-
ten identifiable by keywords alone, sentiment can be
expressed in a more subtle manner. For example, the
sentence “How could anyone sit through this movie?”
contains no single word that is obviously negative.
(See Section 7 for more examples). Thus, sentiment
seems to require more understanding than the usual
topic-based classification. So, apart from presenting
our results obtained via machine learning techniques,
we also analyze the problem to gain a better under-
standing of how difficult it is.

2 Previous Work

This section briefly surveys previous work on non-
topic-based text categorization.

One area of research concentrates on classifying
documents according to their source or source style,
with statistically-detected stylistic variation (Biber,
1988) serving as an important cue. Examples in-
clude author, publisher (e.g., the New York Times vs.
The Daily News), native-language background, and
“brow” (e.g., high-brow vs. “popular”, or low-brow)
(Mosteller and Wallace, 1984; Argamon-Engelson et

1http://www.mindfuleye.com/about/lexant.htm

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 79-86.
 Proceedings of the Conference on Empirical Methods in Natural

[Pang et al., 2002]

35

Proposed word lists Accuracy Ties

Human 1 positive: dazzling, brilliant, phenomenal, excellent, fantastic 58% 75%
negative: suck, terrible, awful, unwatchable, hideous

Human 2 positive: gripping, mesmerizing, riveting, spectacular, cool, 64% 39%
awesome, thrilling, badass, excellent, moving, exciting

negative: bad, cliched, sucks, boring, stupid, slow

Figure 1: Baseline results for human word lists. Data: 700 positive and 700 negative reviews.

Proposed word lists Accuracy Ties

Human 3 + stats positive: love, wonderful, best, great, superb, still, beautiful 69% 16%
negative: bad, worst, stupid, waste, boring, ?, !

Figure 2: Results for baseline using introspection and simple statistics of the data (including test data).

accuracy — percentage of documents classified cor-
rectly — for the human-based classifiers were 58%
and 64%, respectively.4 Note that the tie rates —
percentage of documents where the two sentiments
were rated equally likely — are quite high5 (we chose
a tie breaking policy that maximized the accuracy of
the baselines).

While the tie rates suggest that the brevity of
the human-produced lists is a factor in the relatively
poor performance results, it is not the case that size
alone necessarily limits accuracy. Based on a very
preliminary examination of frequency counts in the
entire corpus (including test data) plus introspection,
we created a list of seven positive and seven negative
words (including punctuation), shown in Figure 2.
As that figure indicates, using these words raised the
accuracy to 69%. Also, although this third list is of
comparable length to the other two, it has a much
lower tie rate of 16%. We further observe that some
of the items in this third list, such as “?” or “still”,
would probably not have been proposed as possible
candidates merely through introspection, although
upon reflection one sees their merit (the question
mark tends to occur in sentences like “What was the
director thinking?”; “still” appears in sentences like
“Still, though, it was worth seeing”).

We conclude from these preliminary experiments
that it is worthwhile to explore corpus-based tech-
niques, rather than relying on prior intuitions, to se-
lect good indicator features and to perform sentiment
classification in general. These experiments also pro-
vide us with baselines for experimental comparison;
in particular, the third baseline of 69% might actu-
ally be considered somewhat difficult to beat, since
it was achieved by examination of the test data (al-
though our examination was rather cursory; we do

4Later experiments using these words as features for
machine learning methods did not yield better results.

5This is largely due to 0-0 ties.

not claim that our list was the optimal set of four-
teen words).

5 Machine Learning Methods

Our aim in this work was to examine whether it suf-
fices to treat sentiment classification simply as a spe-
cial case of topic-based categorization (with the two
“topics” being positive sentiment and negative sen-
timent), or whether special sentiment-categorization
methods need to be developed. We experimented
with three standard algorithms: Naive Bayes clas-
sification, maximum entropy classification, and sup-
port vector machines. The philosophies behind these
three algorithms are quite different, but each has
been shown to be effective in previous text catego-
rization studies.

To implement these machine learning algorithms
on our document data, we used the following stan-
dard bag-of-features framework. Let {f1, . . . , fm} be
a predefined set of m features that can appear in
a document; examples include the word “still” or
the bigram “really stinks”. Let ni(d) be the num-
ber of times fi occurs in document d. Then, each
document d is represented by the document vector
!d := (n1(d), n2(d), . . . , nm(d)).

5.1 Naive Bayes

One approach to text classification is to assign to a
given document d the class c∗ = arg maxc P (c | d).
We derive the Naive Bayes (NB) classifier by first
observing that by Bayes’ rule,

P (c | d) =
P (c)P (d | c)

P (d)
,

where P (d) plays no role in selecting c∗. To estimate
the term P (d | c), Naive Bayes decomposes it by as-
suming the fi’s are conditionally independent given

Features # of frequency or NB ME SVM
features presence?

(1) unigrams 16165 freq. 78.7 N/A 72.8
(2) unigrams ” pres. 81.0 80.4 82.9
(3) unigrams+bigrams 32330 pres. 80.6 80.8 82.7
(4) bigrams 16165 pres. 77.3 77.4 77.1
(5) unigrams+POS 16695 pres. 81.5 80.4 81.9
(6) adjectives 2633 pres. 77.0 77.7 75.1
(7) top 2633 unigrams 2633 pres. 80.3 81.0 81.4
(8) unigrams+position 22430 pres. 81.0 80.1 81.6

Figure 3: Average three-fold cross-validation accuracies, in percent. Boldface: best performance for a given
setting (row). Recall that our baseline results ranged from 50% to 69%.

class distributions was out of the scope of this study),
we randomly selected 700 positive-sentiment and 700
negative-sentiment documents. We then divided this
data into three equal-sized folds, maintaining bal-
anced class distributions in each fold. (We did not
use a larger number of folds due to the slowness of
the MaxEnt training procedure.) All results reported
below, as well as the baseline results from Section 4,
are the average three-fold cross-validation results on
this data (of course, the baseline algorithms had no
parameters to tune).

To prepare the documents, we automatically re-
moved the rating indicators and extracted the tex-
tual information from the original HTML docu-
ment format, treating punctuation as separate lex-
ical items. No stemming or stoplists were used.

One unconventional step we took was to attempt
to model the potentially important contextual effect
of negation: clearly “good” and “not very good” in-
dicate opposite sentiment orientations. Adapting a
technique of Das and Chen (2001), we added the tag
NOT to every word between a negation word (“not”,
“isn’t”, “didn’t”, etc.) and the first punctuation
mark following the negation word. (Preliminary ex-
periments indicate that removing the negation tag
had a negligible, but on average slightly harmful, ef-
fect on performance.)

For this study, we focused on features based on
unigrams (with negation tagging) and bigrams. Be-
cause training MaxEnt is expensive in the number of
features, we limited consideration to (1) the 16165
unigrams appearing at least four times in our 1400-
document corpus (lower count cutoffs did not yield
significantly different results), and (2) the 16165 bi-
grams occurring most often in the same data (the
selected bigrams all occurred at least seven times).
Note that we did not add negation tags to the bi-
grams, since we consider bigrams (and n-grams in

general) to be an orthogonal way to incorporate con-
text.

6.2 Results

Initial unigram results The classification accu-
racies resulting from using only unigrams as fea-
tures are shown in line (1) of Figure 3. As a whole,
the machine learning algorithms clearly surpass the
random-choice baseline of 50%. They also hand-
ily beat our two human-selected-unigram baselines
of 58% and 64%, and, furthermore, perform well in
comparison to the 69% baseline achieved via limited
access to the test-data statistics, although the im-
provement in the case of SVMs is not so large.

On the other hand, in topic-based classification,
all three classifiers have been reported to use bag-
of-unigram features to achieve accuracies of 90%
and above for particular categories (Joachims, 1998;
Nigam et al., 1999)9 — and such results are for set-
tings with more than two classes. This provides
suggestive evidence that sentiment categorization is
more difficult than topic classification, which cor-
responds to the intuitions of the text categoriza-
tion expert mentioned above.10 Nonetheless, we still
wanted to investigate ways to improve our senti-
ment categorization results; these experiments are
reported below.

Feature frequency vs. presence Recall that we
represent each document d by a feature-count vector
(n1(d), . . . , nm(d)). However, the definition of the

9Joachims (1998) used stemming and stoplists; in
some of their experiments, Nigam et al. (1999), like us,
did not.

10We could not perform the natural experiment of at-
tempting topic-based categorization on our data because
the only obvious topics would be the film being reviewed;
unfortunately, in our data, the maximum number of re-
views per movie is 27, too small for meaningful results.

I 08 III ma

o TF

Why did NB win

NB1mL sees hon radsactually say
Tore or other moderate signals

Negations

Human Madhne Cooperation

word log-likelihood ratios

36

• NB’s log-posterior is weighted word counting

28

word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

new review Xnew: love love the movie

log p(Xnew |positive) = ∑
w∈Xnew

log p(w |positive) = − 4.96

log p(Xnew |negative) = − 8.91

37

28

word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

new review Xnew: love love the movie

log p(Xnew |positive) = ∑
w∈Xnew

log p(w |positive) = − 4.96

log p(Xnew |negative) = − 8.91

Data splits for evaluation
• Training vs. Test sets
• Training vs. Development/Tuning vs. Test set

38

no

t

That
FftF east

Cross-validation
• Compared to fixed train/dev/test, more useful

for small datasets

39

4.9 • STATISTICAL SIGNIFICANCE TESTING 15

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure 4.7 10-fold cross-validation

the higher score. But just looking at this one difference isn’t good enough, because
A might have a better performance than B on a particular test set just by chance.

Let’s say we have a test set x of n observations x = x1,x2, ..,xn on which A’s
performance is better than B by d (x). How can we know if A is really better than B?
To do so we’d need to reject the null hypothesis that A isn’t really better than B andnull hypothesis

this difference d (x) occurred purely by chance. If the null hypothesis was correct,
we would expect that if we had many test sets of size n and we measured A and B’s
performance on all of them, that on average A might accidentally still be better than
B by this amount d (x) just by chance.

More formally, if we had a random variable X ranging over test sets, the null
hypothesis H0 expects P(d (X) > d (x)|H0), the probability that we’ll see similarly
big differences just by chance, to be high.

If we had all these test sets we could just measure all the d (x0) for all the x0. If we
found that those deltas didn’t seem to be bigger than d (x), that is, that p-value(x) was
sufficiently small, less than the standard thresholds of 0.05 or 0.01, then we might
reject the null hypothesis and agree that d (x) was a sufficiently surprising difference
and A is really a better algorithm than B. Following Berg-Kirkpatrick et al. (2012)
we’ll refer to P(d (X)> d (x)|H0) as p-value(x).

In language processing we don’t generally use traditional statistical approaches
like paired t-tests to compare system outputs because most metrics are not normally
distributed, violating the assumptions of the tests. The standard approach to comput-
ing p-value(x) in natural language processing is to use non-parametric tests like the
bootstrap test (Efron and Tibshirani, 1993)— which we will describe below—or abootstrap test

similar test, approximate randomization (Noreen, 1989). The advantage of theseapproximate
randomization

tests is that they can apply to any metric; from precision, recall, or F1 to the BLEU
metric used in machine translation.

The word bootstrapping refers to repeatedly drawing large numbers of smallerbootstrapping

samples with replacement (called bootstrap samples) from an original larger sam-
ple. The intuition of the bootstrap test is that we can create many virtual test sets
from an observed test set by repeatedly sampling from it. The method only makes
the assumption that the sample is representative of the population.

Consider a tiny text classification example with a test set x of 10 documents. The
first row of Fig. 4.8 shows the results of two classifiers (A and B) on this test set,
with each document labeled by one of the four possibilities: (A and B both right,
both wrong, A right and B wrong, A wrong and B right); a slash through a letter

