text classification with naive Bayes

CS 490A, Fall 2020

Applications of Natural Language Processing <u>https://people.cs.umass.edu/~brenocon/cs490a_f20/</u>

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- Thanks for your exercises!
 - Type/token ratio def'n
- HW1 released today: Naive Bayes text classification!
 - Due Friday, 9/18
- Python tutorial in Tomas' OH
 - Wed 11:15am to 12:45pm
 - See Piazza "logistics" post, as always
- Schedule: <u>https://people.cs.umass.edu/</u> <u>~brenocon/cs490a_f20/schedule.html</u>

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label y (from a finite label set)
- goal: learn a mapping function from **x** to **y**

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

problem	x	У	
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}	
topic identification	documents	{sports, news, health,}	
author identification	books	{Tolkien, Shakespeare, }	
spam identification	emails	{spam, not spam}	

... many more!

input **x**:

From European Union <info@eu.org>☆</info@eu.org>	
Subject	
Reply to ☆	

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON \$10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL: CONTACT US NOW VIA EMAIL:

label y: spam or not spam

we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$

f can be hand-designed rules

- if "won \$10,000,000" in **x**, **y** = **spam**
- if "CS490A Fall 2020" in **x**, **y** = **not spam**

what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data
- this is known as **supervised learning**

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)
CS585 important update	not spam
ancient unicorns speaking english!!!	spam

training data:

x (email text)	y (spam or not spam)						
learn how to fly in 2 minutes	spam						
send me your bank info	spam						
CS585 Gradescope consent poll	not spam						
click here for trillions of \$\$\$	spam						
ideally many more examples!							
heldout dat	a:						
x (email text)	y (spam or not spam)						
CS585 important update	not spam ~S_ Vor						
ancient unicorns speaking english!!!	spam prod						
learn mapping function on training data,							
measure its accuracy of	n heldout data						

probability review

- random variable *X* takes value *x* with probability p(X = x); shorthand p(x)
- joint probability: p(X = x, Y = y)
- conditional probability: p(X = x | Y = y)

$$=\frac{p(X=x, Y=y)}{p(Y=y)}$$

• when does $p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$?

probability of some input text

- goal: assign a probability to a sentence
 - sentence: sequence of *tokens* $p(w_1, w_2, w_3, ..., w_n)$ p(the cat sleeps) > p(cat sleeps the)
 - $w_i \in V$ where V is the vocabulary (types)
- some constraints:

non-negativity for any $w \in V$, $p(w) \ge 0$

probability distribution, sums to 1

$$\sum_{w \in V} p(w) = 1$$

how to estimate p(sentence)?

$p(w_1, w_2, w_3, \dots, w_n)$

we could count all occurrences of the sequence

 $W_1, W_2, W_3, \dots, W_n$

in some large dataset and normalize by the number of sequences of length *n* in that dataset

how many *parameters* would this require?

chain rule

 $p(w_1, w_2, w_3, \dots w_n \mid y=k) \\ = p(w_1 \mid y=k) p(w_2, w_1 \mid y=k) p(w_3 \mid w_1, w_2) \dots$

naive Bayes' conditional indepedence assumption: the probability of generating a word is independent of all other words (conditional on doc class)

this is called the **unigram probability**. what are its limitations?

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- training data (movie reviews):
 - i hate the movie
 - i love the movie
 - i hate the actor
 - the movie i love
 - i love love love love the movie
 - hate movie
 - i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

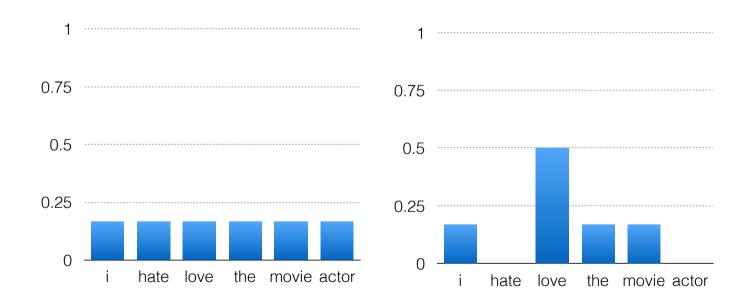
	word	count	
	i	2	
	hate	1	
	love	1	
	the	2	
	movie	1	
	actor	1	
e	quivalent repi	resentation to	•

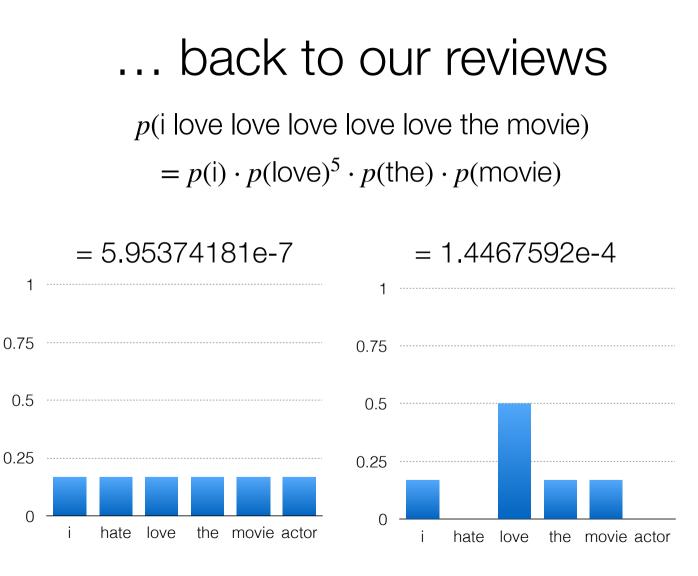
actor i i the the love movie hate

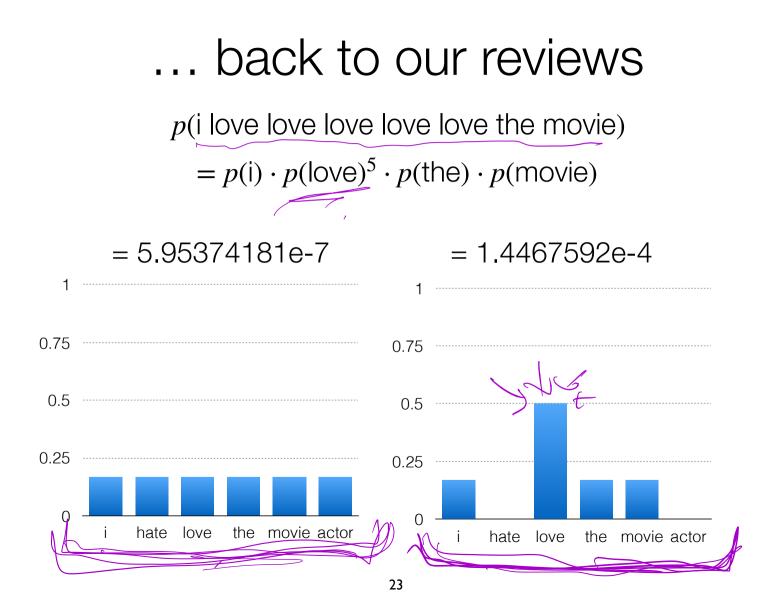
naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- **goal:** infer probability distribution that generated the labeled data for each label

which of the below distributions most likely generated the positive reviews?



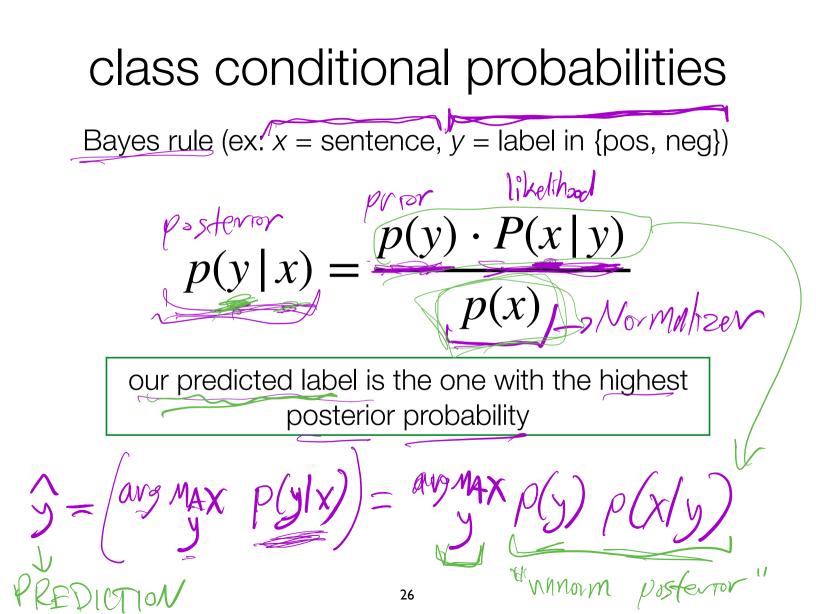




logs to avoid underflow

 $log(TT; p(w_i)) = \sum_{i} log p(w_i)$

$$\begin{array}{l} \text{logs to avoid underflow} \\ p(w_1) \cdot p(w_2) \cdot p(w_3) \dots \cdot p(w_n) \\ \text{can get really small esp. with large } n \\ \log \prod p(w_i) = \sum \log p(w_i) \\ p(\mathbf{i}) \cdot p(\operatorname{love})_{\Lambda}^5 \cdot p(\operatorname{the}) \cdot p(\operatorname{movie}) \\ = 5.95374181e-7 \\ \log p(\mathbf{i}) + 5 \log p(\operatorname{love}) + \log p(\operatorname{the}) + \log p(\operatorname{movie}) \\ = -14.3340757538 \end{array}$$



remember the independence assumption!

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

$$\stackrel{(MAP) class}{=} \hat{y} = P(y) \cdot T_{i} P(w_{i} \mid y)$$

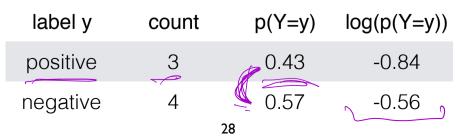
$$\stackrel{(MAP) class}{=} \hat{y} = P(y) \cdot T_{i} P(w_{i} \mid y)$$

$$\stackrel{(MAP) class}{=} \hat{y} = P(y) \cdot T_{i} P(w_{i} \mid y)$$

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...



computing the likelihood...

	X <u>y=pos</u>	sitive)	ivved A	p(X)	y=negativ	<mark>′</mark> e)
word	training	p(w Ly)		word	count	p(w l y)
i	3	0.19		i	4	0.22
hate	0	0.00		hate	4	0.22
love	7	0.44		love	1	0.06
the	3	0.19		the	4	0.22
movie	3	0.19/		movie	3	0.17
actor	0	0.00		actor	2	0.11
total	16			total	18	
		Ŏ	_		(, 0000 3

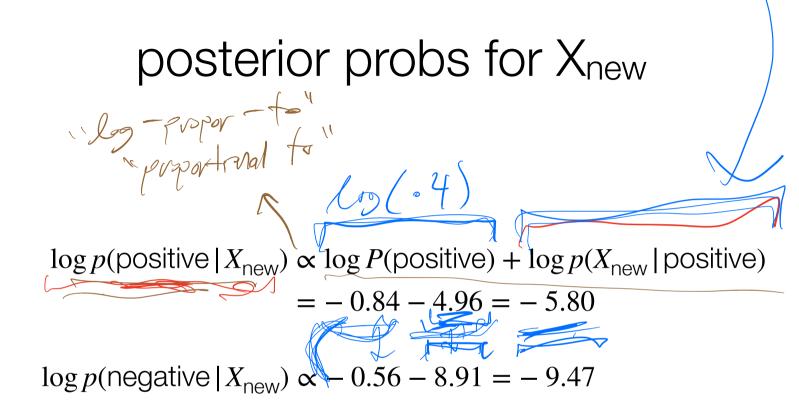
p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	word	count	p(w l y)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

new review Xnew: love love the movie

$$\log p(X_{\text{new}} | \text{positive}) = \sum_{w \in X_{\text{new}}} \log p(w | \text{positive}) = -4.96$$
$$\log p(X_{\text{new}} | \text{negative}) = -8.91$$

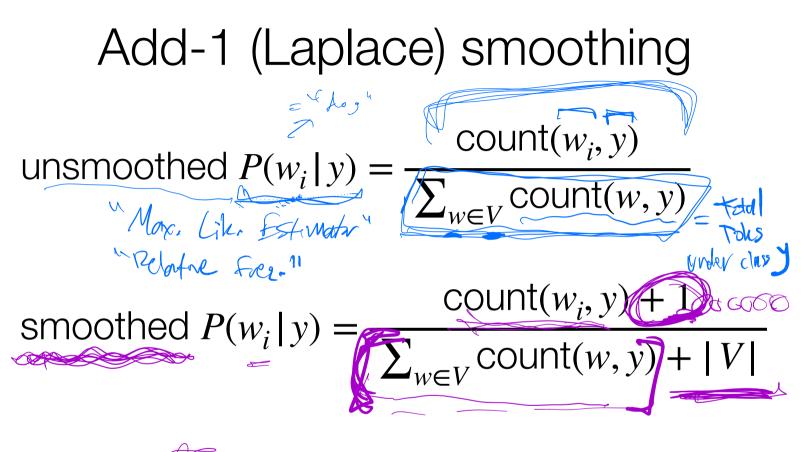


What does NB predict?

N= 105

what if we see no positive training documents containing the word "awesome"?

p(awesome | positive) = 0



what happens if we do add- α smoothing as α increases? A = 0

Example

Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, July 2002, pp. 79-86. Association for Computational Linguistics.

Thumbs up? Sentiment Classification using Machine Learning Techniques

Bo Pang and Lillian Lee Department of Computer Science Cornell University Ithaca, NY 14853 USA {pabo,llee}@cs.cornell.edu

Shivakumar Vaithyanathan

IBM Almaden Research Center 650 Harry Rd. San Jose, CA 95120 USA shiv@almaden.ibm.com

[Pang et al., 2002]

1	Ø,	Proposed word lists	Accuracy	Ties
/	Human 1	positive: dazzling, brilliant, phenomenal, excellent, fantastig	(58%)	75%
		negative: suck, terrible, awful, unwatchable, hideous	\searrow	
	Human 2	\mathbf{F}	(64%)	39%
		awesome, thrilling, badass, excellent, moving, exciting	2	\frown
		negative: bad, cliched, sucks, boring, stupid, slow	L L	

4904:Acc = 68.17

Figure 1: Baseline results for human word lists. Data: 700 positive and 700 negative reviews.

			~	1		
	Features	# of	frequency or ⁶	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Figure 3: Average three-fold cross-validation accuracies, in percent. Boldface: best performance for a given setting (row). Recall that our baseline results ranged from 50% to 69%.

Why did NS wm? - NB/ML (es has varde achalle set = Tore or other malkate signals - Negaturs??

- Alvman-Machne Coperation?

word log-likelihood ratios

• NB's log-posterior is *weighted* word counting

p(X | y=negative)

p(w l y)

0.22

0.22

0.06

0.22

0.17

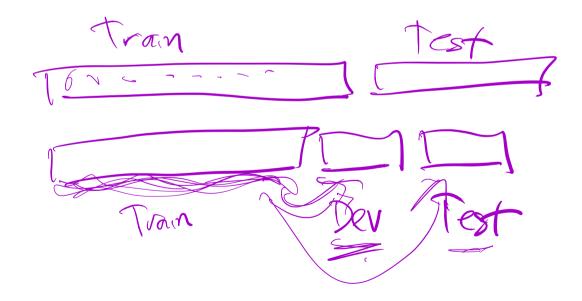
0.11

word	count	p(w l y)	word	count
i	3	0.19	i	4
hate	0	0.00	hate	4
love	7	0.44	love	1
the	3	0.19	the	4
movie	3	0.19	movie	3
actor	0	0.00	actor	2
total	16		total	18

$$\log p(X_{\text{new}} | \text{positive}) = \sum_{w \in X_{\text{new}}} \log p(w | \text{positive}) = -4.96$$

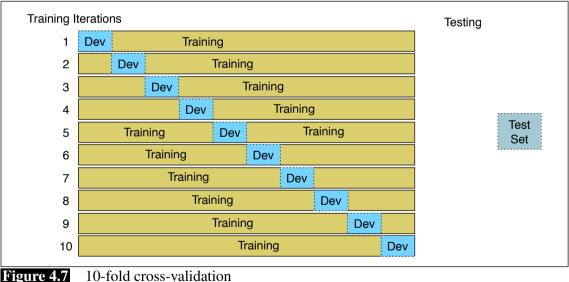
Data splits for evaluation

- Training vs. Test sets
- Training vs. Development/Tuning vs. Test set



Cross-validation

 Compared to fixed train/dev/test, more useful for small datasets



10-fold cross-validation