text classification with naive Bayes

CS 490A, Fall 2020

Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs490a_f20/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

- Thanks for your exercises! $\quad=\frac{\text { Num Tokens }}{\text { Num Types }}$
- HW1 released today: Naive Bayes text classification!
- Due Friday, 9/18
- Python tutorial in Tomas' OH
- Wed 11:15am to 12:45pm
- See Piazza "logistics" post, as always
- Schedule: https://people.cs.umass.edu/
~brenocon/cs490a f20/schedule.html

text classification

- input: some text \mathbf{x} (e.g., sentence, document)
- output: a label \mathbf{y} (from a finite label set)
- goal: learn a mapping function f from \mathbf{x} to \mathbf{y}

text classification

- input: some text \mathbf{x} (e.g., sentence, document)
- output: a label \mathbf{y} (from a finite label set)
- goal: learn a mapping function f from \mathbf{x} to \mathbf{y}
fyi: basically every NLP problem reduces to learning a mapping function with various definitions of \mathbf{x} and \mathbf{y} !

lava. detection
text \mapsto major world lave.
authors motive pred.

input \mathbf{x} :

label y: spam or not spam

$$
\begin{aligned}
& \text { we'd like to learn a mapping } f \text { such that } \\
& f(\mathbf{x})=\mathbf{~ s p a m}
\end{aligned}
$$

f can be hand-designed rules

- if "won $\$ 10,000,000$ " in $\mathbf{x}, \mathbf{y}=\mathbf{s p a m}$
- if "CS490A Fall 2020" in $\mathbf{x}, \mathbf{y}=$ not spam
what are the drawbacks of this method?
Time consuming
User-specific?
Getting leads rout is hard: (conjugaters)

f can be learned from data

- given training data (already-labeled $\mathbf{x , y}$ pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

training data:

\mathbf{x} (email text)

learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll click here for trillions of \$\$
... ideally many more examples!
y (spam or not spam)

spam
 spam

spam
or try set
heldout data:

x (email text)
CS585 important update
ancient unicorns speaking english!!!
not spam
spam

$$
\hat{y}=f(x) \quad \text { Then: } \hat{y} \stackrel{?}{=} y
$$

training data:

\mathbf{x} (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of \$\$
... ideally many more examples!

heldout data:

y (spam or not spam)
y (spam or not spam)
spam
not spam

learn mapping function on training data, measure its accuracy on heldout data

probability review

- random variable X takes value x with probability $p(X=\bar{x})$; shorthand $\bar{p}(x)$
- joint probability: $p(X=x, Y=y) \quad P((X=x) \wedge(Y=y))$
- conditional probability: $p(X=x \mid \underline{Y=y})$

$$
=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

- when does $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$?

probability of some input text

- goal: assign a probability to a sentence
- sentence: sequence of tokens

$$
\begin{aligned}
& p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \quad P\left(W_{1}=w_{1}, W_{2}=w_{2},\right. \\
& p \text { (the cat sैleeps })>p(\text { cat sleeps the })
\end{aligned}
$$

- $w_{i} \in V$ where V is the vocabulary (types)
- some constraints: set of vord types

$$
\text { non-negativity for any } w \in V, p(w) \geq 0
$$

how to estimate p(sentence)?

$$
\begin{gathered}
n \text { tolvens } \\
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \quad \mathbb{V} \text { seed scab }
\end{gathered}
$$

we could count all occurrences of the sequence

in some large dataset and normalize by the number of sequences of length n in that dataset
how many parameters would this require?

$$
\begin{aligned}
& n \\
& \uparrow
\end{aligned}
$$

\cdots

$$
P\left(w_{1}, w_{2} \ldots w_{a}\right)=\prod_{i=1}
$$

chain rule

$$
\begin{gathered}
p\left(w_{1}, w_{2}, w_{3}, \ldots w_{n} \mid y=k\right) \\
=p\left(w_{1} \mid y=k\right) p(w), \ldots \\
p\left(w_{2} \mid w_{4} y y=k\right) p\left(w_{3} \mid w_{1}, w_{2}, y=k\right) \ldots
\end{gathered}
$$

naive Bayes' conditional independence
$w_{i} \perp_{j} / y=k$ assumption: independent of all other words How many prams? (conditional on doc class)

$$
=\prod_{i=1}^{n} \quad P\left(w_{i} \mid y=k\right) \downarrow \text { (pert) }
$$

this is called the unigram probability. what are its limitations?

toy sentiment example

- vocabulary V: \{i, hate, love, the, movie, actor\}
- training data (movie reviews):
\rightarrow - i hate the movie
\rightarrow - il love the movie
- i hate the actor
- the movie i love
- i Iove」ove love love love the movie
labels: positive negative
- hate movie

$$
\begin{aligned}
& \text { Wont: i hate the actor i love the movie } P(w \mid k)^{\forall w, k} \\
& \text { egg } P(w=\text { "hate" } \mid y=\text { POS })=0
\end{aligned}
$$

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

	word	count		
	i	2 "',		
$1 \times$	hate	1 '		
i	love	1 ,		
\dagger	the	2		
	movie	1		
:	actor	1		

bag-of-words representation

i hate the actor i love the movie
word count

i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor $i i$ the the love movie hate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

which of the below distributions most likely generated the positive reviews?

$p\left(w k^{\prime}\right)$

1

$$
p(w \mid k)
$$

0.75

$\rightarrow \infty$

... back to our reviews

p (i love love love love love the movie)
$=p(\mathrm{i}) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p$ (movie)
$=.000000$ 595 .00014
0.75
0.5

$$
=5.95374181 \mathrm{e}-7
$$

$$
1
$$

$$
.75
$$

Staped have $4 / 8$

logs to avoid underflow

$p\left(w_{1}\right) \cdot p\left(w_{2}\right) \cdot p(w 3) \ldots \cdot p\left(w_{n}\right)$
can get really small esp. with large n
$\log \prod p\left(w_{i}\right)=\sum \log p\left(w_{i}\right)$
$p($ ($) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p$ (movie) $=5.95374181 \mathrm{e}-7$
$\log p$ (i) $+5 \log p$ (love) $+\log p$ (the) $+\log p$ (movie)
$=-14.3340757538$

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in $\{p o s, n e g\})$

$$
p(y \mid x)=\frac{p(y) \cdot P(x \mid y)}{p(x)}
$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in $\{p o s, n e g\})$

$$
\begin{aligned}
& \text { posterior } \\
& p(y \mid x)=\frac{\begin{array}{l}
\text { prior } \\
p(y) \cdot P(x \mid y)
\end{array}}{p(x)}, \frac{\text { likelihood }}{P(x)}
\end{aligned}
$$

our predicted label is the one with the highest posterior probability, i.e.,
$\hat{y}=\arg \max p(y) \cdot P(x \mid y)$

$$
y \in Y
$$

what happened to
the denominator???
remember the independence assumption!

$$
\begin{aligned}
& \underset{\substack{\text { maximuma } \\
\text { DMAsferioi class }}}{\max }=\arg \max _{y \in Y} p(y) \cdot P(x \mid y) \\
& =\arg \max _{y \in Y} p(y) \cdot \prod_{w \in x} P(w \mid y) \\
& =\arg \max _{y \in Y} \log p(y)+\sum_{w \in x} \log P(w \mid y)
\end{aligned}
$$

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie $p(y)$ lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y count	$p(Y=y)$	$\log (p(Y=y))$	
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

$p(X \mid y=p o s i t i v e)$

word	count	$p(w \mid y)$
i	3	0.19
hate	0	0.00
love	7	0.44
the	3	0.19
movie	3	0.19
actor	0	0.00
total	$\mathbf{1 6}$	

$p(X \mid y=$ negative $)$

word	count	$p(w / y)$
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	$\mathbf{1 8}$	

$p(X \mid y=p o s i t i v e)$

word	count	$\mathrm{p}(\mathrm{w} \mid \mathrm{y})$	word	count	$\mathrm{p}(\mathrm{w} \mid \mathrm{y})$
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44		love	1
the	3	0.19	the	4	0.06
movie	3	0.19	movie	3	0.22
actor	0	0.00	actor	2	0.17
total	$\mathbf{1 6}$		total	$\mathbf{1 8}$	

new review $X_{\text {new: }}$: love love the movie
$\log p\left(X_{\text {new }} \mid\right.$ positive $)=\sum_{w \in X_{\text {new }}} \log p(w \mid$ positive $)=-4.96$
$\log p\left(X_{\text {new }} \mid\right.$ negative $)=-8.91$

posterior probs for $X_{\text {new }}$

$$
\begin{aligned}
\log p\left(\text { positive } \mid X_{\text {new }}\right) & \propto \log P(\text { positive })+\log p\left(X_{\text {new }} \mid \text { positive }\right) \\
& =-0.84-4.96=-5.80
\end{aligned}
$$

$\log p\left(\right.$ negative $\left.\mid X_{\text {new }}\right) \propto-0.56-8.91=-9.47$

What does NB predict?

word likelihood ratios

what if we see no positive training documents containing the word "awesome"?

$p($ awesome \mid positive $)=0$

Add-1 (Laplace) smoothing

unsmoothed $P\left(w_{i} \mid y\right)=\frac{\operatorname{count}\left(w_{i}, y\right)}{\sum_{w \in V} \operatorname{count}(w, y)}$
smoothed $P\left(w_{i} \mid y\right)=\frac{\operatorname{count}\left(w_{i}, y\right)+1}{\sum_{w \in V} \operatorname{count}(w, y)+|V|}$
what happens if we do
add- α smoothing as α increases?

