text classification with naive Bayes

CS 490A, Fall 2020

Applications of Natural Language Processing <u>https://people.cs.umass.edu/~brenocon/cs490a_f20/</u>

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- Thanks for your exercises!
 - Type/token ratio def'n
- HW1 released today: Naive Bayes text classification!

Num Tolzens Num Types

- Due Friday, 9/18
- Python tutorial in Tomas' OH
 - Wed 11:15am to 12:45pm
 - See Piazza "logistics" post, as always
- Schedule: <u>https://people.cs.umass.edu/</u> <u>~brenocon/cs490a_f20/schedule.html</u>

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label y (from a finite label set)
- goal: learn a mapping function f from x to y

 $+(\chi) \mapsto \gamma$

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

larg. detection text 1-7 major world lang.

authors notive pred.

label y: spam or not spam

we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$

f can be hand-designed rules

if "won \$10,000,000" in x, y = spam
if "CS490A Fall 2020" in x, y = not spam

what are the drawbacks of this method?

Time channing User-specific? Getting Lethic's roll to had (Consignitions)

- given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

training data:

\wedge						
	x (email text)	y (spam or not spam)				
	learn how to fly in 2 minutes	spam				
	send me your bank info	spam				
	CS585 Gradescope consent poll	not spam				
	click here for trillions of \$\$\$	spam				
	ideally many more examples!	or test set				
<u> </u>	heldout da	ata: for evaluation				
	x (email text)	y (spam or not spam)				
	CS585 important update	not spam				
	ancient unicorns speaking english!!!	spam				
	$\hat{y} = f(x)$	Then: $\hat{g} = \hat{y}$				

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)
CS585 important update	not spam
ancient unicorns speaking english!!!	spam

learn mapping function on training data, measure its accuracy on heldout data

probability review

- random variable X takes value x with probability p(X = x); shorthand p(x)
- joint probability: p(X = x, Y = y) $P((X = x) \land (Y = y))$
- conditional probability: p(X = x | Y = y)

• when does $p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$? (Mer) P(x|y) = P(x)

 $=\frac{p(X=x, Y=y)}{p(Y=y)}$

probability of some input text

- goal: assign a probability to a sentence
 - sentence: sequence of *tokens* $p(w_1, w_2, w_3, ..., w_n)$ $P(W = w_1, W_2 = w_2, ..., W_n)$ p(the cat sleeps) > p(cat sleeps the)
 - $w_i \in V$ where V is the vocabulary (types) some constraints:

non-negativity for any
$$w \in V$$
, $p(w) \ge 0$
probability
distribution,
sums to 1
 $w \in V$
 $w \in V$

how to estimate p(sentence)? $p(w_1, w_2, w_3, \dots, w_n)$

we could count all occurrences of the sequence

$$w_1, w_2, w_3, \ldots, w_n$$

in some large dataset and normalize by the number of sequences of length *n* in that dataset

how many *parameters* would this require?

$$p(w_{1}, w_{2}, w_{3}, ..., w_{n} | y=k)$$

$$= p(w_{1} | y=k) p(w_{2}, w_{1} | y=k) p(w_{3} | w_{1}, w_{2}, y=k)$$

$$= p(w_{1} | y=k) p(w_{2}, w_{1} | y=k) p(w_{3} | w_{1}, w_{2}, y=k)$$

$$= p(w_{1} | y=k) p(w_{2}, w_{1} | y=k) p(w_{3} | w_{1}, w_{2}, y=k)$$
naive Bayes' conditional indepedence
assumption:
w_{1} + w_{2} + w_{3} + w_{3}

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- training data (movie reviews):
 - i hate the movie
 - į love the movie
- i hate the actor
 - the movie i love
 - i love love love love the movie
 - hate movie
 - i hate the actor i love the movie
 Mont 3 P(w | k) W/k
 P(w | k) W/k = vhote (y = Pos) = 0

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

	word	count	
	i	2	
	hate	1	
	love	1	
	the	2	
	movie	1	
	actor	1	
e act	quivalent rep	presentation to): ate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- <u>given labeled data</u>, we can use naive Bayes to estimate probabilities for unlabeled data
- **goal:** infer probability distribution that generated the labeled data for each label

which of the below distributions most likely generated the positive reviews?

20

Staped have 9/8

logs to avoid underflow

 $p(w_1) \cdot p(w_2) \cdot p(w_3) \dots \cdot p(w_n)$ can get really small esp. with large *n*

$$\log \prod p(w_i) = \sum \log p(w_i)$$

 $p(i) \cdot p(love)^{5} \cdot p(the) \cdot p(movie) = 5.95374181e-7$ log p(i) + 5 log p(love) + log p(the) + log p(movie)= -14.3340757538

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

posterior

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

what happened to the denominator???

remember the independence assumption!

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

$$= \arg \max_{y \in Y} p(y) \cdot \prod_{w \in x} P(w \mid y)$$

$$= \arg \max_{y \in Y} \log p(y) + \sum_{w \in x} \log P(w \mid y)$$

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	p(Y=y)	log(p(Y=y))
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	word	count	p(w l y)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

p(X | y=positive)

p(X | y=negative)

word	count	p(w l y)	word	count	p(w l y)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

new review Xnew: love love the movie

$$\log p(X_{\text{new}} | \text{positive}) = \sum_{w \in X_{\text{new}}} \log p(w | \text{positive}) = -4.96$$
$$\log p(X_{\text{new}} | \text{negative}) = -8.91$$

posterior probs for Xnew

 $log p(positive | X_{new}) \propto log P(positive) + log p(X_{new} | positive)$ = -0.84 - 4.96 = -5.80

 $\log p(\text{negative} | X_{\text{new}}) \propto -0.56 - 8.91 = -9.47$

What does NB predict?

word likelihood ratios

what if we see no positive training documents containing the word "awesome"?

p(awesome | positive) = 0

Add-1 (Laplace) smoothing

unsmoothed
$$P(w_i | y) = \frac{\operatorname{count}(w_i, y)}{\sum_{w \in V} \operatorname{count}(w, y)}$$

smoothed
$$P(w_i | y) = \frac{\operatorname{count}(w_i, y) + 1}{\sum_{w \in V} \operatorname{count}(w, y) + |V|}$$

what happens if we do add- α smoothing as α increases?