
Homework 3
Due Monday April 8

CS 485, UMass Amherst, Spring 2024

Deliverables

Create your writeup as a PDF with any tool you like, and submit to Gradescope. Do not include
cky.py directly in your writeup. Submit cky.py or any other additional code to a separate Grade-
scope assignment entry.

1 CKY Implementation

In this section, you will implement the CKY algorithm for an unweighted CFG. Start with the
starter code cky.py.

1.1 CKY acceptance

Implement the acceptance version of CKY as cky acceptance(), which returns True if there
is an “S“ covering the entire sentence (in other words, assume S is the only start symbol). Use
the “GRAMMAR1“ default grammar. Does it return True or False for the following sentences?
Please pprint() the chart cells for each case as well.

• the the

• the table attacked a dog

• the cat

Hint: A simple way to implement the chart cells is by maintaining a list of nonterminals at the
span. This list represents all possible nonterminals over that span.
Hint: pprint()ing the CKY chart cells may be useful for debugging.
Hint: Python dictionaries allow tuples as keys. For example, d={}; d[(3,4)] = []. A slight
shortcut is that d[3,4] means the same thing as d[(3,4)].

1.2 CKY parsing

Implement the parsing version of CKY, which returns one of the legal parses for the sentence
(and returns None if there are none). If there are multiple real parses, we don’t care which
one you print. Implement this as cky parse(). You probably want to start by copying your
cky acceptance() answer and modifying it. Have it return the parse in the following format,
using nested lists to represent the tree (this is a simple Python variant of the Lisp-style S-expression
that’s usually used for this.)

1



[’S’,
[[’NP’, [[’Det’, ’the’], [’Noun’, ’cat’]]],
[’VP’, [[’Verb’, ’attacked’],

[’NP’, [[’Det’, ’the’], [’Noun’, ’food’]]]]]]]

Print out the parses for the following sentences.

• the cat saw a dog

• the cat saw a dog in a table

• the cat with a table attacked the food

Hint: In the chart cells, you will now have to store backpointers as well. One way to do it is to store
a list of tuples, each of which is “(nonterminal, splitpoint, leftchild nonterm, rightchild nonterm)“.
For example, if the state “(’NP’, 3, ’Det’, ’Noun’)“ is in the cell for span (2,4), that means this is a
chart state of symbol NP, which came from a “Det“ at position (2,3) and a Noun at position (3,4).
Hint: It may be useful to use a recursive function for the backtrace.

1.3 Grammar improvement

Please revise the grammar as follows.

• Add four words to the lexicon: two verbs “attack” and “attacks”, and the nouns “cats” and
“dogs”.

• Revise the rules to enforce subject-verb agreement on number.

The new grammar should accept and reject the following sentences. Please run your parser on
these sentences and report the parse trees for the accepted ones. Also, describe how you changed
the grammar, and why.

• ACCEPT: “the cat attacks the dog”

• REJECT: “the cat attack the dog”

• ACCEPT: “the cats attack the dog”

• REJECT: “the cat with the food on a dog attack the dog”

Hint: you will need to introduce new nonterminal symbols, and modify the currently existing
ones.

1.4 Extra credit: Grammar engineering

Revise the grammar to incorporate coordination or other syntactic phenomena in English. Show
examples of what it can analyze, and describe what you did.

2



2 Dependency parser errors

Run a dependency parser that uses the Universal Dependencies representation and try it out
on some examples you make up. Feel free to use a web demo like from CoreNLP (https://
corenlp.run/) or from SpaCy (https://demos.explosion.ai/displacy-ent) for this.

Show a sentence where the parser makes an error. Show the parse itself (for example, from
a web visualization). Describe the error (including false positive edge(s) involved with the prob-
lem), and how to fix the error if you were to manually fix it.

Do this and draw a correct parse for the sentence.

Notes:

• We recommend trying shorter or intermediate length sentences, whose parses are easier to
understand. But at the same time, longer sentences are more likely to have errors. You could
start with something basic, then iteratively add more and more and see what happens.

• You’ll want to read the Universal Dependencies documentation for this, at
https://universaldependencies.org/

• Specifically for English relations, the page is:
https://universaldependencies.org/en/dep/index.html

3 Word embedding questions

3.1 Cosine similarity

Consider the setting where you want to evaluate cosine similarity between pairs of word embed-
dings. Section 6.3.3 of your reading discusses creating word vectors based on contextual term
co-occurrence counts. (As the reading states, this method can work ok, though typically not as
well as model-based dense embeddings.) When using this method, what range of values can
cosine similarity take?

3.2 Co-occurrence versus contextual similarity

To model semantic similarity between two words u and v, one way to do it would be to measure
how often u and v co-occur; call this a direct co-occurrence measure. This is different than distri-
butional similarity, which is based on similarity of u and v’s contexts; thus, distributional similarity
is based on a a second-order form of co-occurrence. (This applies both to the direct context meth-
ods in 6.3.3, but also to word2vec/SGNS or other model-based embeddings, which are trained to
summarize this contextual information.) The following questions ask you to explain the difference
between co-occurrence versus distributional similarity. You should assume the context window is
fairly short.

3.2.1

Give an example of a pair of words where you might expect them to have high co-occurrence, but
low distributional similarity, and why. (Assume there is plenty of data about them; explain any
assumptions you have about the corpus, or how contexts are defined, if necessary.)

3

https://corenlp.run/
https://corenlp.run/
https://demos.explosion.ai/displacy-ent
https://universaldependencies.org/
https://universaldependencies.org/en/dep/index.html


3.2.2

Give an example of a pair of words where you might expect them to have low co-occurrence, but
high distributional similarity, and why.

4 Exploring pre-trained word embeddings

Download a version of the GLoVE word embeddings.

4.1 Nearest neighbors

Implement cosine similarity and choose six words. For each, display the top-10 most similar
words, and comment on what the model seems to have learned, or failed to learn.

• a name (for example: person, organization, or location)

• a common noun

• a verb

• a word that has an antonym

4.2 Extra credit: Clustering

Consider higher-level structure of what the embeddings have learned. For something like a few
hundred words (for example, you could use the 200 most frequent terms in the GLoVE file), run a
clustering algorithm from sklearn (for example, k-means or hierarchical agglomerative clustering,
ideally using cosine similarity), and print out the words belonging to each cluster.1

Comment on a few things that the model seems to heave learned ok, and a few things that
don’t make sense.

1For k-means, just look through each cluster and print out words in each. For hierarchical clustering, words will
be leaves in the tree; you can use a dendrogram or just print out the hierarchy yourself with textual or HTML-based
formatting as you prefer.

4


	CKY Implementation
	CKY acceptance
	CKY parsing
	Grammar improvement
	Extra credit: Grammar engineering

	Dependency parser errors
	Word embedding questions
	Cosine similarity
	Co-occurrence versus contextual similarity
	
	


	Exploring pre-trained word embeddings
	Nearest neighbors
	Extra credit: Clustering


