Neural Networks in NLP

CS 485, Spring 2024

Applications of Natural Language Processing
https://people.cs.umass.edu/~brenocon/cs485 s24/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

[Slides from Mohit lyyer and Richard Socher]

https://people.cs.umass.edu/~brenocon/cs485_s24/

® Progress report: due Monday 4/22
® HW4 after that - last homework!
® Final presentations: May 7 & 9

We have word embeddings...

pain \
ly \Madrid
many x Rome
ma walked Berlin
L] o Yy ——
o) TSy woman Ank
‘" N swam :
klng ~‘~~ . O s o —— Moscow
: ‘. walking ® = canada Ottawa
/ O Vietnam Hanoi
swimmingg 2 China Beijing
Male-Female Verb tense Country-Capital

Can we compose meanings (embeddings) for
phrases, sentences, etc.!

neural a really good book

network (§ 1 B)=

Or, contextual meaning for each token?

Key idea: automatically determine how to
combine embedding from different tokens

NN: Kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

NN: Kind of like several intermediate logregs

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

p—
hw,b(x)

Layer L,

NN: Kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)

|

hy b(X)

|

Layer L,

Layer L,

Nonlinear activations

e “Sqguash functions”!

values

/. szesscs
7
’ —— sigmoid

tanh
- == RelLU

= |ogistic / Sigmoid

1
f(x) = 1
(x) e (1)
= tanh
f(x) = tanh(x) = — = —1
X)=1Tanni{x)=
14 e2x
(2)
s RelLU
0O for x<0
f(x)_{x for x>0

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W, f(Wx))) = Wx

® Nhttps://playground.tensorflow.org/

N

DATA

Which dataset
do you want to
use?

%

Ratio of training
to test

data: 50%
—0

Noise: 0

Batch size: 10
—o

S

Epoch

000,000

FEATURES

Which
properties do
you want to
feed in?

-3

sin(X.)

Demo

L O

'

This is the output
from one neuron.
Hover to see it
larger.

(

OUTPUT

Regularization rate

0

Test loss 0.499

Learning rate Activation Regularization
0.03 v Tanh v None
+ — 2 HIDDEN LAYERS
+ - + -
4 neurons 2 neurons
’
p

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

o)
..

Training loss 0.510

°
o
'u.‘ ° °
o
o_2 0o o
° 0
() $ @ .‘.
%S o St
e C o
¢
0’ %) o
@0 %% Se
‘d.'.'.)
o Yo O.
Nee
° °
e o ()
()
© ()
|
0

Problem type

Classification

® |t's easy to create different neural network
architectures, and execute gradient descent
learning for arbitrary networks, via
backpropagation

® e.g.the PyTorch library for Python

® |llustration: deep averaging models for text
classification

“bag of embeddings”

predict Positive affine transformation

! \

_ exp(W(av))
S exp(W (av))s

a really good ook
C1 C2 C3 Cs

lyyer et al,ACL 2015

deep averaging networks

out = softmax(W; - z,)

I I 22:f(W2'21)
nonlinear function

l A

21 — 1 - Qv

X

I _affine transformation

&7
ayv = _
1=1

/7\\

a really good ook
CH Co2 C3 C4

deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W3 2)

chain rule!!!
I 2o = f(Wa - 21)

.
I

/7\'\”

a really good ook
C1 Co C3 C4

oL JdL oJout dz, 0z dav
oc; odout 0z, 0z, dav oc;

ary = _
n

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL

=979
oW,

a really good ook
C1 Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL dL. 0out (322

oW, dout dz, oW,

a really good ook
C1 Co C3 C4

packpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL B ol. oout 0Z2 0Z1 oav
oc; 0out 0z, 0z, dav o,

oL oL oout oz,

oW, oout 9z, oW,

20 Rumelhart et al., 1 986

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book

d

deep learning frameworks make
building NNs super easy!

out = softmax(W, -z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
Take the mean embedding. Since padding results
1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really good book return logits

n

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :

self. model.train ()
. z1 = f(W1 - av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’ label’])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
batch loss = criterion (out,
av = —7’ batch[’label’])

batch loss.backward ()

1=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!

NN architectures

® \\e need neural network models that can
orocess token-by-token

® Major components
e Recurrent neural networks (RNNSs)
e Attention mechanism (softmax over tokens)

o Self-attention ("Transformers”; next lecture)

e This is basically the entire model behind BERT and
GPT, the best general-purpose NN NLP models
today!

25

® |dea: beyond the origina

Recurrent neural networks

every token has its own hidde
h_t, influenced by the previous state!

~

|

les pauvres sont démunis

—> 0000

|

> 0000

word emlbedding,

N state vector

e Many applications
e Next word prediction

® [ext classification

® [ranslation...

26

Character LMs comparison: RNN (LSTM) vs. N-Gram

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

First Citizen:

Nay, then, that was hers,

It speaks against your other service:
But since the

youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.

SEBASTIAN:
Do I stand till the break off.

BIRON:
Hide thy head.

VENTIDIUS:

He purposeth to Athens: whither, with the vow

I made to handle you.
—_hup//karpathy.github.iof2015/05/2tfrhn-effectiveness
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde26 18422139

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Structure awareness (one particular RNN hidden state)

Cell sensntlve to posutlon |n line:
g e r fclelllof"tthhe crossing

0 the Berezina lies in the fact
d 1ndubitab1y prove

t

t

f

D hiEafarisivaicy’ of all the plansiioln
he soundness of the only possible
h
e

nemy's retreat and

-the one Kutuzov and general mass of the army

simply to follow ¢th enemy up. The French crowd Thed

‘11y increasing speed and all its energy was directed to
oal. It fled like a wounded animal and it was impossible

h. This was shown not so much by the arrangements it

as by what took place at the bridges. When the bri

'dsoldiers, people from Moscow and women with children

the French transport, all--carried on by vis inertiae- -
‘“rd into boats and into the ice-covered water and did not

}
A large portlon of cells are not easily interpretable. Here is a typical example:

lter fileld'SuSitring repre:

http://karpathy.github.io/2015/05/2 | /rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Encoder RNN

Sequence-to-sequence: the bottleneck problem

Target sentence (output)

A
(\

the poor don’t have any money <END>

B R R I IR I I
(@
o lo| “le[[’]e® lof—le[lo[o[le[o[lo
[() [@ (@ O o o o o (@
les pauvres sont démunis <START> the poor don’t have any money
\ J
Y

Source sentence (input)

NNY 49p023Q

Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

4 \
source sentence. " don't END
. e poor don ave any money <END>
Information bottleneck! P v Y Y

R RERAEAINA R R RE R RE R
@ (@ (@

) o “|lo| ‘e[|e@ 1o lo[o[lo[" lo[e[o
[() [@ (@ O o o o o (@
les pauvres sont démunis <START> the poor don’t have any money
\ J

Y
Source sentence (input)

NNY 42P023a(d

® stopped here

31

‘you can’t cram the meaning
of a whole %&@#&ing
sentence Into a single

$*(&@ing vector!”

— Ray Mooney (famous NLP professor at UT Austin)

32

Encoder RNN

idea: what if we use multiple vectors?

—

)

1]

0000
I
v

> 0000
|
|

les pauvres sont démunis

\

J

Y

Source sentence (input)

Instead of:

les pauvres sont démunis =

Let’s try:
les pauvres sont démunis =

(all 4 hidden states!)

33

The solution: attention

* Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a

particular part of the source sequence at
each time step

Conceptually similar to word alignments

34

How does it work"?

® |n general, we have a single query vector and
multiple key vectors. We want to score each
guery-key pair
e Attention score based on query-key
similarity
e New representation = attention softmax-
weighted average of token embeddings

35

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

f_H

A

dot product with keys
(encoder hidden states)

[T

—

—

]

1]

—> 0000

les pauvres sont démunis

\

J

Source sentence (input)

Y

>

—>(0000

<START>

Query 1:
decoder, first time step

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

U

/

On this decoder timestep, we’re

mostly focusing on the first
encoder hidden state (”/es”)

Take softmax to turn the scores

into a probability distribution

A S
ahh

les pauvres sont démunis

\

J

Source sentence (input)

Y

Y
0000

|

<START>

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

output

.
A
.
Ry
.®
.
“ K4
.* ¥
R
.
Ry
.
.
.®

.
N .
-
= ““
.e
wn®
we® *
R
‘0
°

@ QJ,Q @

Attention <

|

—> 0000
—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

—>1 0000

<START>

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

.
. .
-
b
l““‘

.
A
.
.®
PRy
.
“ K4
.* ¥
.®
.
.®
.
.
PRy

Attention

output

U
U
- .
U .
U -
& -
& -
N -
U
8 H
o .
U
N .
. -
0 .

{ i
TTT T

*
*
*
*
*
*
*
f:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

the

A

les pauvres sont démunis

\

J

Y

Source sentence (input)

—>1 0000

<START>

Concatenate attention output

y, <— with decoder hidden state, then

use to compute ¥y, as before

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

Attention
output

O"

*

*
‘-“‘i

@ QJ/. @

poor

‘e N\
*
’0
*
*
N 2
*
*
*
*
*
*
*
*
*

‘\
“
\J

A .

-

:

* -
o* -
* -

o - *
** . .
* - .
** - ®
. - .
o* - *

1]

—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

©000]|

—>1 0000

|

<START> the

decoder, second time step

Many variants of attention

® QOriginal formulation: a(q, k) = sz tanh(W,[q; k])

® Bilinear prOdUCt Cl(q, k) = qTWk Luong et al., 2015

e Dot product: a(q,k) = q’'k Luong et al., 2015
q'k

® Scaled dot product: a(q,k) = Vaswan et l., 2017

4]

Attention is great

e Attention significantly improves NMT performance

* |t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

* Provides shortcut to faraway states

0
* Attention provides some interpretability) g g E
* By inspecting attention distribution, we can see 2 8833
what the decoder was focusing on > The
* We get alignment for freel poor |
don’ t

* This is cool because we never explicitly trained
an alignment system

have

* The network just learned alignment by itself any

money

42

Us

Uy

Hierarchical attention

sentence
attention

sentence
encoder

word
attention

word
encoder

43

pork belly = delicious . || scallops? || I don’t even

like scallops, and these were a-m-a-z-i-n-g . || fun

and tasty cocktails. || next time I in Phoenix, I will
go back here. || Highly recommend.
Figure 1: A simple example review from Yelp 2013 that con-
sists of five sentences, delimited by period, question mark. The
first and third sentence delivers stronger meaning and inside,
the word delicious, a-m-a-z-i-n-g contributes the most in defin-

ing sentiment of the two sentences.

e Yang et al., 2016:
hierarchical attention
for document
classification

