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We have word embeddings...
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Can we compose meanings (embeddings) for
phrases, sentences, etc.!

neural a really good book

network ( § 1 B )=

Or, contextual meaning for each token?

Key idea: automatically determine how to
combine embedding from different tokens



NN: Kind of like several intermediate logregs

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!




NN: Kind of like several intermediate logregs

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.
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NN: Kind of like several intermediate logregs

Before we know it, we have a multilayer neural network....

a.k.a. feedforward network (see INLP on terminology)
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Nonlinear activations

e “Sqguash functions”!
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IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??



IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(xX) = X)
more powerful than a one-layer network??

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W, f(Wx))) = Wx



® Nhttps://playground.tensorflow.org/
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Problem type

Classification



® |t's easy to create different neural network
architectures, and execute gradient descent
learning for arbitrary networks, via
backpropagation

® e.g.the PyTorch library for Python

® |llustration: deep averaging models for text
classification



“bag of embeddings”

predict Positive affine transformation
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deep averaging networks

out = softmax(W; - z,)

I I 22:f(W2'21)
nonlinear function
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deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L?

a really  good ook
C1 Co C3 C4



deep averaging networks

out = softmax(W3 2)

chain rule!!!
I 2o = f(Wa - 21)
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a really  good ook
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL
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a really  good ook
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deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL dL. 0out (322

oW, dout dz, oW,

a really  good ook
C1 Co C3 C4



packpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!
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20 Rumelhart et al., 1 986



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book



d

deep learning frameworks make
building NNs super easy!

out = softmax(W, -z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’ ][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
# Take the mean embedding. Since padding results
# 1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really  good  book return logits

n



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :

self. model.train ()
. z1 = f(W1 - av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’ label’ ])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book



a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
batch loss = criterion (out,
av = —7’ batch[’label’])

batch loss.backward ()

1=1 — .
/f \\ self.optimizer.step ()

really good book
that’s it! no need to compute

gradients by hand!



NN architectures

® \\e need neural network models that can
orocess token-by-token

® Major components
e Recurrent neural networks (RNNSs)
e Attention mechanism (softmax over tokens)

o Self-attention ("Transformers”; next lecture)

e This is basically the entire model behind BERT and
GPT, the best general-purpose NN NLP models
today!

25



® |dea: beyond the origina

Recurrent neural networks

every token has its own hidde
h_t, influenced by the previous state!

~

|

les pauvres sont démunis

—> 0000

|

> 0000

word emlbedding,

N state vector

e Many applications
e Next word prediction

® [ext classification

® [ranslation...

26



Character LMs comparison: RNN (LSTM) vs. N-Gram

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

First Citizen:

Nay, then, that was hers,

It speaks against your other service:
But since the

youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.

SEBASTIAN:
Do I stand till the break off.

BIRON:
Hide thy head.

VENTIDIUS:

He purposeth to Athens: whither, with the vow

I made to handle you.
—_hup//karpathy.github.iof2015/05/2tfrhn-effectiveness
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde26 18422139



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Structure awareness (one particular RNN hidden state)
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A large portlon of cells are not easily interpretable. Here is a typical example:

lter fileld'SuSitring repre:

http://karpathy.github.io/2015/05/2 | /rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Encoder RNN

Sequence-to-sequence: the bottleneck problem

Target sentence (output)

A
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the poor don’t have any money <END>
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Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

4 \
source sentence. " don't END
. e poor don ave any money <END>
Information bottleneck! P v Y Y
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® stopped here

31



‘you can’t cram the meaning
of a whole %&@#&ing
sentence Into a single

$*(&@ing vector!”

— Ray Mooney (famous NLP professor at UT Austin)

32



Encoder RNN

idea: what if we use multiple vectors?

—
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les pauvres sont démunis

\

J

Y

Source sentence (input)

Instead of:

les pauvres sont démunis =

Let’s try:
les pauvres sont démunis =

(all 4 hidden states!)

33



The solution: attention

* Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a

particular part of the source sequence at
each time step

Conceptually similar to word alignments

34



How does it work"?

® |n general, we have a single query vector and
multiple key vectors. We want to score each
guery-key pair
e Attention score based on query-key
similarity
e New representation = attention softmax-
weighted average of token embeddings

35



Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

f_H

A

dot product with keys
(encoder hidden states)
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Query 1:
decoder, first time step



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

U

/

On this decoder timestep, we’re

mostly focusing on the first
encoder hidden state (”/es”)

Take softmax to turn the scores

into a probability distribution
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Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

output

.
A
.
Ry
.®
.
“ K4
.* ¥
R
.
Ry
.
.
.®

.
N .
-
= ““
.e
wn®
we® *
R
‘0
°

@ QJ,Q @

Attention <

|

—> 0000
—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

—>1 0000

<START>

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.



Attention
distribution
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Sequence-to-sequence with attention
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distribution
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Many variants of attention

® QOriginal formulation: a(q, k) = sz tanh(W,[q; k])

® Bilinear prOdUCt Cl(q, k) = qTWk Luong et al., 2015

e Dot product: a(q,k) = q’'k Luong et al., 2015
q'k

® Scaled dot product:  a(q,k) = Vaswan et l., 2017

4]



Attention is great

e Attention significantly improves NMT performance

* |t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

* Provides shortcut to faraway states

0
* Attention provides some interpretability ) g g E
* By inspecting attention distribution, we can see 2 8833
what the decoder was focusing on > The
* We get alignment for freel poor |
don’ t

* This is cool because we never explicitly trained
an alignment system

have

* The network just learned alignment by itself any

money
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Hierarchical attention

sentence
attention

sentence
encoder

word
attention

word
encoder
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pork belly = delicious . || scallops? || I don’t even

like scallops, and these were a-m-a-z-i-n-g . || fun

and tasty cocktails. || next time I in Phoenix, I will
go back here. || Highly recommend.
Figure 1: A simple example review from Yelp 2013 that con-
sists of five sentences, delimited by period, question mark. The
first and third sentence delivers stronger meaning and inside,
the word delicious, a-m-a-z-i-n-g contributes the most in defin-

ing sentiment of the two sentences.

e Yang et al., 2016:
hierarchical attention
for document
classification



