Word embeddings (I)

CS 485, Spring 2024 Applications of Natural Language Processing

Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst

[Slides from Laure Thompson]

- Proposal feedback should be accessible. Please meet your project mentor!
- Proposal revisions: due next week
- HW3 to be released tomorrow; will be due approx Monday 4/8

Word embeddings

- Today
 - 1. Question: how can we generally represent word meanings?
 - 2. Approach: train a language model with word embeddings to discover latent meanings of words!
 - ... which exploit the *distributional hypothesis*
- Key idea: automatically discover aspects of language meaning, from raw textual corpora
 - Today / next week: word embeddings
 - Next: neural network language models & other hijinks

What is "asdfasdf"?

"<u>asdfasdf</u>, Most Neglected American Fruit." — NYTimes <u>1922</u>

" <u>asdfasdf</u> Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" — NYTimes <u>1942</u>

"The <u>asdfasdf</u> is also pollinated by flies and other insects rather than by honeybees..."—NYTimes <u>2020</u>

"Many people also cook with ripe <u>asdfasdf</u>, making bread, beer, ice cream, or this <u>asdfasdf</u> pudding..." — NYTimes <u>2020</u>

What is a *pawpaw*?

I. Look it up in a dictionary

<u>https://www.merriam-webster.com/</u> <u>https://www.oed.com/</u> <u>https://en.wiktionary.org</u>/

pawpaw noun

Save Word

paw·paw variants: *or less commonly* **<u>papaw</u>**

Definition of pawpaw

1 \ pə-'po 🕥 \ : <u>PAPAYA</u>

2 \'pä-(,)po , 'po- \: a North American tree (Asimina triloba) of the custard-apple family with purple flowers and an edible green-skinned fruit also: its fruit

II. Look it at how its used

"<u>Pawpaw</u>, Most Neglected American Fruit." — NYTimes <u>1922</u>

" <u>**Pawpaw</u>** Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" — NYTimes <u>1942</u></u>

"The <u>pawpaw</u> is also pollinated by flies and other insects rather than by honeybees..."—NYTimes <u>2020</u>

"Many people also cook with ripe **<u>pawpaws</u>**, making bread, beer, ice cream, or this **<u>pawpaw</u>** pudding..." — NYTimes <u>2020</u>

II. Look it at how its used

"*Pawpaw*, Most Neglected <u>American Fruit</u>." — NYTimes <u>1922</u>

"*Pawpaw* Recommended by U.S. Food Experts, Along With **Persimmon**, as War **Nutrition** "—NYTimes <u>1942</u>

"The *pawpaw* is also **<u>pollinated</u>** by <u>flies</u> and other insects rather than by honeybees..."—NYTimes <u>2020</u>

"Many people also <u>cook</u> with <u>ripe</u> pawpaws, making <u>bread</u>, <u>beer</u>, <u>ice</u> <u>cream</u>, or this pawpaw <u>pudding</u> ..." — NYTimes <u>2020</u>

Word Relations

Synonyms

- \cdot couch / sofa
- \cdot oculist / eye doctor
- \cdot car / automobile
- \cdot water / H₂ O
- \cdot draft / draught

Antonyms

- \cdot yes / no
- \cdot dark / light
- \cdot hot / cold
- \cdot up / down
- \cdot clip / clip

Word Relations

Similarity

- \cdot cat / dog
- \cdot cardiologist / pulmonologist
- \cdot car / bus
- \cdot sheep / goat
- \cdot glass / mug

Relatedness

- \cdot coffee / cup
- \cdot waiter / menu
- \cdot farm / cow
- \cdot house / roof
- \cdot theater / actor

Quantifying Similarity

Ask humans how *similar* two words are on a scale of 1 - 10

Word 1	Word 2	SimLex - 999
area	region	9.47
horse	mare	8.33
water	ice	6.7
hill	cliff	4.28
absence	presence	0.4
princess	island	0.3

Hill et al. 2015

... but what about computers?

Word Embeddings

Represent each word type as a **vector**

On Vectors:

 \cdot A **vector** is a list of numbers

· A vector can also be considered a **point** in a k- dimensional space

Capturing Word Similarity

Operationalize word similarity by computationally **comparing** vectors

Distance reflects semantic relationships

Closer vectors represen t more similar words

More distant vectors represent less similar words

Applications

Task-driven: e.g. use for improve text classification (next week)

... or ...

Exploratory / descriptive Study word use over time [Hamilton et al. 2016]

One – Hot Vectors

Each word is represented by a vector with a 1 in the word's index in the vocabulary and 0's elsewhere. (We've implicitly used these already...)

Term	Vector
i	<1, 0, 0, 0, 0, 0>
hate	<0, 1, 0, 0, 0, 0>
love	<0, 0, 1, 0, 0, 0>
the	<0, 0, 0, 1, 0, 0>
movie	<0, 0, 0, 0, 1, 0>
film	<0, 0, 0, 0, 0, 1>

Q: What are some issues with these representations?

Learning word vectors

- Let's learn learn a word vector ("word embedding") for each word type in the vocabulary
- Goal: general-purpose representation applicable to a wide variety of tasks

Distributional Semantics

"You shall know a word by the company it keeps!" — Firth (1957)

Intuitions: <u>Harris (1954)</u>

"If A and B have almost identical environments except chiefly sentences which contain both, we say they are synonyms: *oculist* and *eye- doctor*."

Build vectors based on context

Q: What are some issues with these representations?

Neural Word Embeddings

Neural Word Embeddings

Skip- Gram with Negative Sampling (SGNS)

The brown fox jumps over the lazy dog.

SG NS: Skip- Gram Model

The brown fox **jumps** over the lazy dog.

SG NS: Skip- Gram Model

The brown fox **jumps** over the lazy dog. Context Window Size = 2

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog. Context Window Size = 2

jumps \rightarrow { brown, fox, over, the }

Simple idea: from a word, predict its context words! (A funny type of language model.) Learn a vector that's good at that. Similar words should get similar vectors. Key idea: use unlabeled text as *implicitly supervised data*

- A word *s* near *apricot*
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
- The idea comes from neural language modeling
 - Bengio et al. (2003)
 - Collobert et al. (2011)

SG<u>NS</u> : Negative Sampling

Co-occurrence jumps, fox:

SG<u>NS</u> : Negative Sampling

Co-occurrence jumps, fox:

Modeling goal

- Given a (target, context) tuple
 - [+] (apricot, jam)
 - [-] (apricot, aardvark)
- Want binary probability
 - P(c | t) for a real context [+])
 - 1-P(c | t) for a "fake", unseen context [-])
- Let u_t and v_c be their vectors.
- $P(c | t) = \sigma(u_t'v_c)$: logistic in their *affinity/* similarity

How do we compare vectors?

· Similarity measurements

- · Larger values \rightarrow similar vectors \rightarrow similar words
- \cdot Smaller values \rightarrow dissimilar vectors \rightarrow dissimilar words

\cdot Distance / dissimilarity measurements

- Note: distance metric requires triangle inequality
- · Larger values \rightarrow dissimilar vectors \rightarrow dissimilar words
- \cdot Smaller values \rightarrow similar vectors \rightarrow similar words

Euclidean Distance

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Issue: Vector length depends on frequency. More frequent words will have longer vectors.

Cosine <u>Similarity</u>

$$s(x,y) = \frac{x \cdot y}{|x||y|}$$

Only depends on vector angle

Range:

Non-negative vectors & cosine similarity

If all vectors have non - negative values, then their cosine similarity will be between 0 and 1