Word embeddings (I)

CS 485, Spring 2024
Applications of Natural Language Processing

Brendan O'Connor
College of Information and Computer Sciences
University of Massachusetts Amherst

- Proposal feedback should be accessible. Please meet your project mentor!
- Proposal revisions: due next week
- HW3 to be released tomorrow; will be due approx Monday 4/8

Word embeddings

- Today
- 1. Question: how can we generally represent word meanings?
- 2. Approach: train a language model with word embeddings to discover latent meanings of words!
- ... which exploit the distributional hypothesis
- Key idea: automatically discover aspects of language meaning, from raw textual corpora
- Today / next week: word embeddings
- Next: neural network language models \& other hijinks

What is "asdfasdf"?

" asdfasdf, Most Neglected American Fruit." - NYTimes 1922
" asdfasdf Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" - NYTimes 1942
"The asdfasdf is also pollinated by flies and other insects rather than by honeybees..."- NYTimes 2020
"Many people also cook with ripe asdfasdf, making bread, beer, ice cream, or this asdfasdf pudding..." - NYTimes $\underline{2020}$

What is a pawpaw?

I. Look it up in a dictionary

https://www.merriam- webster.com/
https://www.oed.com/
https://en.wiktionary.org/

pawpaw noun

Θ
 Save Word

paw•paw
variants: or less commonly papaw

Definition of pawpaw

1 \рә- ро́ \: PAPAYA

2 \ 'pä-(.)pȯ (1), 'pȯ- \: a North American tree (Asimina triloba) of the custard-apple family with purple flowers and an edible green-skinned fruit
also : its fruit

II. Look it at how its used

" Pawpaw, Most Neglected American Fruit." - NYTimes 1922
" Pawpaw Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" - NYTimes $\underline{1942}$
" The pawpaw is also pollinated by flies and other insects rather than by honeybees..."- NYTimes $\underline{2020}$
"Many people also cook with ripe pawpaws, making bread, beer, ice cream, or this pawpaw pudding..." - NYTimes $\underline{2020}$

II. Look it at how its used

" Pawpaw, Most Neglected American Fruit ."- NYTimes $\underline{1922}$
" Pawpaw Recommended by U.S. Food Experts, Along With Persimmon , as War Nutrition " - NYTimes $\underline{1942}$
" The pawpaw is also pollinated by flies and other insects rather than by honeybees..."- NYTimes $\underline{2020}$
"Many people also cook with ripe pawpaws, making bread , beer, ice cream , or this pawpaw pudding ..." - NYTimes $\underline{2020}$

Word Relations

Synonyms

- couch / sofa
- oculist / eye - doctor
- car / automobile
- water / $\mathrm{H}_{2} \mathrm{O}$
- draft / draught

Antonyms

- yes / no
- dark / light
- hot / cold
- up / down
- clip / clip

Word Relations

Similarity

- cat / dog
- cardiologist / pulmonologist
- car / bus
- sheep / goat
- glass / mug

Relatedness

- coffee / cup
- waiter / menu
- farm / cow
- house / roof
- theater / actor

Quantifying Similarity

Ask humans how similar two words are on a scale of 1-10

Word 1	Word 2	SimLex $\mathbf{- 9 9 9}$
area	region	9.47
horse	mare	8.33
water	ice	6.7
hill	cliff	4.28
absence	presence	0.4
princess	island	0.3

...but what about computers?

Word Embeddings

Represent each word type as a vector

On Vectors:

- A vector is a list of numbers
- A vector can also be considered a point in a k - dimensional space

Capturing Word Similarity

Operationalize word similarity by computationally comparing vectors

Closer vectors represen t more similar words

More distant vectors represent less similar words

Applications

Task-driven: e.g. use for improve text classification (next week)
... or ...

Exploratory / descriptive Study word use over time [Hamilton et al. 2016]

One - Hot Vectors

Each word is represented by a vector with a 1 in the word's index in the vocabulary and 0 's elsewhere. (We've implicitly used these already...)

Term	Vector
i	$<1,0,0,0,0,0>$
hate	$<0,1,0,0,0,0>$
love	$<0,0,1,0,0,0>$
the	$<0,0,0,1,0,0>$
movie	$<0,0,0,0,1,0>$
film	$<0,0,0,0,0,1>$

Q : What are some issues with these representations?

Learning word vectors

- Let's learn learn a word vector ("word embedding") for each word type in the vocabulary
- Goal: general-purpose representation applicable to a wide variety of tasks

Distributional Semantics

"You shall know a word by the company it keeps!" — Firth (1957)

Intuitions: Harris (1954)

"If A and B have almost identical environments except chiefly sentences which contain both, we say they are synonyms: oculist and eye-doctor ."

Build vectors based on context

Context Words

Q : What are some issues with these representations?

Neural Word Embeddings

Neural Word Embeddings

Skip- Gram with Negative Sampling (SGNS)

The brown fox jumps over the lazy dog.

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog.

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog.
Context Window Size $=2$

SG NS: Skip- Gram Model

The brown fox jumps over the lazy dog. Context Window Size $=2$

$$
\text { jumps } \rightarrow \text { \{ brown, fox, over, the }\}
$$

Simple idea: from a word, predict its context words! (A funny type of language model.)
Learn a vector that's good at that. Similar words should get similar vectors.

Key idea: use unlabeled text as implicitly supervised data

- A word s near apricot
- Acts as gold 'correct answer' to the question
- "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
- The idea comes from neural language modeling
- Bengio et al. (2003)
- Collobert et al. (2011)

SGNS : Negative Sampling

Co-occurrence jumps,fox:

$W_{\text {jumps }} \stackrel{\longrightarrow}{\longrightarrow} C_{\text {fox }}$

SGNS : Negative Sampling

Co-occurrence jumps, fox:

$c_{\text {fox }} \square \square \square \square \square$

Modeling goal

- Given a (target, context) tuple
- [+] (apricot, jam)
- [-] (apricot, aardvark)
- Want binary probability
- $P(c \mid t)$ for a real context [+])
- 1-P(c|t) for a "fake", unseen context [-])
- Let u_{t} and v_{c} be their vectors.
- $P(c \mid t)=\sigma\left(u_{t}{ }^{\prime} v_{c}\right)$: logistic in their affinity/ similarity

How do we compare vectors?

- Similarity measurements
- Larger values \rightarrow similar vectors \rightarrow similar words
- Smaller values \rightarrow dissimilar vectors \rightarrow dissimilar words
- Distance / dissimilarity measurements
- Note: distance metric requires triangle inequality
- Larger values \rightarrow dissimilar vectors \rightarrow dissimilar words
- Smaller values \rightarrow similar vectors \rightarrow similar words

Euclidean Distance

$$
d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

Issue: Vector length depends on frequency. More frequent words will have longer vectors.

Cosine Similarity

$$
s(x, y)=\frac{x \cdot y}{|x||y|}
$$

Only depends on vector angle

Range:

Non- negative vectors \& cosine similarity

If all vectors have non - negative values, then their cosine similarity will be between 0 and 1

