
Constituency Parsing: CKY

CS 485, Spring 2024 
Applications of Natural Language Processing 

https://people.cs.umass.edu/~brenocon/cs485_s24/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_s24/

Context-Free Grammar

2

• CFG describes a generative process for an (infinite) set of
strings

• 1. Nonterminal symbols

• “S”: START symbol / “Sentence” symbol

• 2. Terminal symbols: word vocabulary

• 3. Rules (a.k.a. Productions). Practically, two types:
“Grammar”: one NT expands to >=1 NT
always one NT on left side of rulep

Lexicon: NT expands to a terminal6 Chapter 12. Formal Grammars of English

Noun → f lights | breeze | trip | morning | . . .

Verb → is | pre f er | like | need | want | f ly
Adjective → cheapest | non− stop | f irst | latest

| other | direct | . . .

Pronoun → me | I | you | it | . . .

Proper-Noun → Alaska | Baltimore | Los Angeles
| Chicago | United | American | . . .

Determiner → the | a | an | this | these | that | . . .

Preposition → f rom | to | on | near | . . .

Conjunction → and | or | but | . . .

Figure 12.2 The lexicon forL0.

S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar forL0, with example phrases for each rule.

Fig. 12.2 gives a sample lexicon and Fig. 12.3 summarizes the grammar rules we’ve
seen so far, which we’ll call L0. Note that we can use the or-symbol | to indicate that
a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We start
with S, expand it to NP VP, then choose a random expansion of NP (let’s say to I),
and a random expansion of VP (let’s say to Verb NP), and so on until we generate the
string I prefer a morning flight. Fig. 12.4 shows a parse tree that represents a complete
derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation, essentially the same as LISP tree representations; here isBRACKETED

NOTATION

the bracketed representation of the parse tree of Fig. 12.4:
(12.2) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

6 Chapter 12. Formal Grammars of English

Noun → f lights | breeze | trip | morning | . . .

Verb → is | pre f er | like | need | want | f ly
Adjective → cheapest | non− stop | f irst | latest

| other | direct | . . .

Pronoun → me | I | you | it | . . .

Proper-Noun → Alaska | Baltimore | Los Angeles
| Chicago | United | American | . . .

Determiner → the | a | an | this | these | that | . . .

Preposition → f rom | to | on | near | . . .

Conjunction → and | or | but | . . .

Figure 12.2 The lexicon forL0.

S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar forL0, with example phrases for each rule.

Fig. 12.2 gives a sample lexicon and Fig. 12.3 summarizes the grammar rules we’ve
seen so far, which we’ll call L0. Note that we can use the or-symbol | to indicate that
a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We start
with S, expand it to NP VP, then choose a random expansion of NP (let’s say to I),
and a random expansion of VP (let’s say to Verb NP), and so on until we generate the
string I prefer a morning flight. Fig. 12.4 shows a parse tree that represents a complete
derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation, essentially the same as LISP tree representations; here isBRACKETED

NOTATION

the bracketed representation of the parse tree of Fig. 12.4:
(12.2) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

Constituent Parse Trees

3

6 Chapter 12. Formal Grammars of English

Noun → f lights | breeze | trip | morning | . . .

Verb → is | pre f er | like | need | want | f ly
Adjective → cheapest | non− stop | f irst | latest

| other | direct | . . .

Pronoun → me | I | you | it | . . .

Proper-Noun → Alaska | Baltimore | Los Angeles
| Chicago | United | American | . . .

Determiner → the | a | an | this | these | that | . . .

Preposition → f rom | to | on | near | . . .

Conjunction → and | or | but | . . .

Figure 12.2 The lexicon forL0.

S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar forL0, with example phrases for each rule.

Fig. 12.2 gives a sample lexicon and Fig. 12.3 summarizes the grammar rules we’ve
seen so far, which we’ll call L0. Note that we can use the or-symbol | to indicate that
a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We start
with S, expand it to NP VP, then choose a random expansion of NP (let’s say to I),
and a random expansion of VP (let’s say to Verb NP), and so on until we generate the
string I prefer a morning flight. Fig. 12.4 shows a parse tree that represents a complete
derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation, essentially the same as LISP tree representations; here isBRACKETED

NOTATION

the bracketed representation of the parse tree of Fig. 12.4:
(12.2) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

Section 12.2. Context-Free Grammars 7

S

NP

Pro

I

VP

Verb

prefer

NP

Det

a

Nom

Nom

Noun

morning

Noun

flight

Figure 12.4 The parse tree for “I prefer a morning flight” according to grammarL0.

A CFG like that of L0 defines a formal language. We saw in Ch. 2 that a formal
language is a set of strings. Sentences (strings of words) that can be derived by a gram-
mar are in the formal language defined by that grammar, and are called grammaticalGRAMMATICAL

sentences. Sentences that cannot be derived by a given formal grammar are not in the
language defined by that grammar, and are referred to as ungrammatical. This hardUNGRAMMATICAL

line between “in” and “out” characterizes all formal languages but is only a very simpli-
fied model of how natural languages really work. This is because determining whether
a given sentence is part of a given natural language (say English) often depends on the
context. In linguistics, the use of formal languages to model natural languages is called
generative grammar, since the language is defined by the set of possible sentencesGENERATIVE

GRAMMAR

“generated” by the grammar.

12.2.1 Formal definition of context-free grammar
We conclude this section by way of summary with a quick formal description of a
context-free grammar and the language it generates. A context-free grammar G is
defined by four parameters N, Σ, P, S (technically “is a 4-tuple”):

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β , where A is a non-

terminal, β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol

For the remainder of the book we’ll adhere to the following conventions when dis-
cussing the formal properties (as opposed to explaining particular facts about English
or other languages) of context-free grammars.

Bracket notation

<=> Set of non-terminal spans (start,end positions) 
 {(NP, 0,1), (VP, 1, 5), (NP, 2, 5), ...}

Parsing with a CFG
• Task: given text and a CFG, answer:

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Problem: extremely high number of possible trees for a sentence, and
even a large number of legal trees (licensed by the grammar) for a
sentence

• Many parsing algorithms have been invented to tackle this

• Cocke-Kasami-Younger algorithm (CKY)

• Bottom-up dynamic programming: 
Find possible nonterminals for short spans of sentence, then possible
combinations for higher spans

• Maintains local ambiguity, representing many subtrees for each span. ("Packed
forest" representation)

• Provably finds all possible parse trees (legal derivations), and correctly says
when none exist.

• Requires converting to Chomsky Normal Form (binarization)

4

Chomsky Normal Form

5

CKY

6

0:1

For cell [i,j] (loop through them bottom-up)

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] (Recognizer)

 ... or ...

yummy foods store

0:2

0:3

2:3

Grammar

Adj -> yummy

NP -> foods

NP -> store

NP -> NP NP

NP -> Adj NP

1:2

1:3

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.add (A,B,C, k) to cell [i,j] (Parser)

0 1 2 3

CKY

7

0:1

For cell [i,j] (loop through them bottom-up)

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] (Recognizer)

 ... or ...

yummy foods store

0:2

0:3

2:3

Grammar

Adj -> yummy

NP -> foods

NP -> store

NP -> NP NP

NP -> Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.add (A,B,C, k) to cell [i,j] (Parser)

0 1 2 3

CKY

8

0:1

For cell [i,j] (loop through them bottom-up)

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] (Recognizer)

 ... or ...

yummy foods store

0:2

0:3

2:3

Grammar

Adj -> yummy

NP -> foods

NP -> store

NP -> NP NP

NP -> Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.add (A,B,C, k) to cell [i,j] (Parser)

0 1 2 3

NPNP

 S → NP VP

 NP → NP PP

 VP → V NP

 VP → VP PP

 PP → P NP

 NP → she

 NP → fish

 NP → fork

 NP → chopsticks

 V → eats

 V → fish

 P → with

she fish with chopstickseats

she fish with chopstickseats

0

 S → NP VP

 NP → NP PP

 VP → V NP

 VP → VP PP

 PP → P NP

NP
 NP → she

 NP → fish

 NP → fork

 NP → chopsticks

 V → eats

 V → fish

 P → with

UMass CS 485 In-class Exercise 10/19/23 Name: ___

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.

Show the possible nonterminals in each cell. Optional: draw the backpointers too.

Brendan O’Connor and Andrew McCallum, UMass Amherst

she

fish

with

chopsticks

eats

1

2

3

4

5

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)

and C(2,2).

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Another way.

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

O(G n^3)

G = grammar
constant

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

18

Probabilistic CFGs

19

• Defines a probabilistic generative process for words in a sentence

• (How to learn? Fully supervised with a treebank...)

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

[J&M textbook]

20

((S

 (NP-SBJ (NNP General) (NNP Electric) (NNP Co.))

 (VP (VBD said)

 (SBAR (-NONE- 0)

 (S

 (NP-SBJ (PRP it))

 (VP (VBD signed)

 (NP

 (NP (DT a) (NN contract))

 (PP (-NONE- *ICH*-3)))

 (PP (IN with)

 (NP

 (NP (DT the) (NNS developers))

 (PP (IN of)

 (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))

 (PP-3 (IN for)

 (NP

 (NP (DT the) (JJ second) (NN phase))

 (PP (IN of)

 (NP

 (NP (DT an) (JJ independent)

 (ADJP

 (QP ($ $) (CD 400) (CD million))

 (-NONE- *U*))

 (NN power) (NN plant))

 (, ,)

 (SBAR

 (WHNP-2 (WDT which))

 (S

 (NP-SBJ-1 (-NONE- *T*-2))

 (VP (VBZ is)

 (VP (VBG being)

 (VP (VBN built)

 (NP (-NONE- *-1))

 (PP-LOC (IN in)

 (NP

 (NP (NNP Burrillville))

 (, ,)

 (NP (NNP R.I)))))))))))))))))

Penn

Treebank

PCFG as LM

21

Is a PCFG a good LM? Yes...

22

23

Is a PCFG a good LM? No...

(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Probabilistic CKY: given PCFG and sentence w

• Likelihood of sentence P(w)

• Most probable parse (“Viterbi parse”) 
argmaxy P(y | w) = argmaxy P(y, w)

24

• Parsing model accuracy: lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities 
(sneak in world knowledge?)

• Modern constituent parsers: enrich PCFG with lexical
information and fine-grained nonterminals

• Modern dependency parsers: effectively the same trick

• Parsers’ computational efficiency

• Grammar constant; pruning & heuristic search

• O(N3) for CKY (ok? depends...)

• O(N) left-to-right incremental algorithms

• What was the syntactic training data?

25

